High-Frequency 10-kHz Spinal Cord Stimulation Provides Long-term (24-Month) Improvements in Diabetes-Related Pain and Quality of Life for Patients with Painful Diabetic Neuropathy.
Erika A Petersen, Thomas G Stauss, James A Scowcroft, Michael J Jaasma, Deborah R Edgar, Judith L White, Shawn M Sills, Kasra Amirdelfan, Maged N Guirguis, Jijun Xu, Cong Yu, Ali Nairizi, Denis G Patterson, Michael J Creamer, Vincent Galan, Richard H Bundschu, Neel D Mehta, Dawood Sayed, Shivanand P Lad, David J DiBenedetto, Khalid A Sethi, Johnathan H Goree, Matthew T Bennett, Nathan J Harrison, Atef F Israel, Paul Chang, Paul W Wu, Charles E Argoff, Christian E Nasr, Rod S Taylor, David L Caraway, Nagy A Mekhail
{"title":"High-Frequency 10-kHz Spinal Cord Stimulation Provides Long-term (24-Month) Improvements in Diabetes-Related Pain and Quality of Life for Patients with Painful Diabetic Neuropathy.","authors":"Erika A Petersen, Thomas G Stauss, James A Scowcroft, Michael J Jaasma, Deborah R Edgar, Judith L White, Shawn M Sills, Kasra Amirdelfan, Maged N Guirguis, Jijun Xu, Cong Yu, Ali Nairizi, Denis G Patterson, Michael J Creamer, Vincent Galan, Richard H Bundschu, Neel D Mehta, Dawood Sayed, Shivanand P Lad, David J DiBenedetto, Khalid A Sethi, Johnathan H Goree, Matthew T Bennett, Nathan J Harrison, Atef F Israel, Paul Chang, Paul W Wu, Charles E Argoff, Christian E Nasr, Rod S Taylor, David L Caraway, Nagy A Mekhail","doi":"10.1177/19322968241268547","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The SENZA-PDN study evaluated high-frequency 10-kHz spinal cord stimulation (SCS) for the treatment of painful diabetic neuropathy (PDN). Over 24 months, 10-kHz SCS provided sustained pain relief and improved health-related quality of life. This report presents additional outcomes from the SENZA-PDN study, focusing on diabetes-related pain and quality of life outcomes.</p><p><strong>Methods: </strong>The SENZA-PDN study randomized 216 participants with refractory PDN to receive either conventional medical management (CMM) or 10-kHz SCS plus CMM (10-kHz SCS + CMM), allowing crossover after six months if pain relief was insufficient. Postimplantation assessments at 24 months were completed by 142 participants with a permanent 10-kHz SCS implant, comprising 84 initial and 58 crossover recipients. Measures included the Brief Pain Inventory for Diabetic Peripheral Neuropathy (BPI-DPN), Diabetes-Related Quality of Life (DQOL), Global Assessment of Functioning (GAF), and treatment satisfaction.</p><p><strong>Results: </strong>Over 24 months, 10-kHz SCS treatment significantly reduced pain severity by 66.9% (<i>P</i> < .001; BPI-DPN) and pain interference with mood and daily activities by 65.8% (<i>P</i> < .001; BPI-DPN). Significant improvements were also observed in overall DQOL score (<i>P</i> < .001) and GAF score (<i>P</i> < .001), and 91.5% of participants reported satisfaction with treatment.</p><p><strong>Conclusions: </strong>High-frequency 10-kHz SCS significantly decreased pain severity and provided additional clinically meaningful improvements in DQOL and overall functioning for patients with PDN. The robust and sustained benefits over 24 months, coupled with high participant satisfaction, highlight that 10-kHz SCS is an efficacious and comprehensive therapy for patients with PDN.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241268547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The SENZA-PDN study evaluated high-frequency 10-kHz spinal cord stimulation (SCS) for the treatment of painful diabetic neuropathy (PDN). Over 24 months, 10-kHz SCS provided sustained pain relief and improved health-related quality of life. This report presents additional outcomes from the SENZA-PDN study, focusing on diabetes-related pain and quality of life outcomes.
Methods: The SENZA-PDN study randomized 216 participants with refractory PDN to receive either conventional medical management (CMM) or 10-kHz SCS plus CMM (10-kHz SCS + CMM), allowing crossover after six months if pain relief was insufficient. Postimplantation assessments at 24 months were completed by 142 participants with a permanent 10-kHz SCS implant, comprising 84 initial and 58 crossover recipients. Measures included the Brief Pain Inventory for Diabetic Peripheral Neuropathy (BPI-DPN), Diabetes-Related Quality of Life (DQOL), Global Assessment of Functioning (GAF), and treatment satisfaction.
Results: Over 24 months, 10-kHz SCS treatment significantly reduced pain severity by 66.9% (P < .001; BPI-DPN) and pain interference with mood and daily activities by 65.8% (P < .001; BPI-DPN). Significant improvements were also observed in overall DQOL score (P < .001) and GAF score (P < .001), and 91.5% of participants reported satisfaction with treatment.
Conclusions: High-frequency 10-kHz SCS significantly decreased pain severity and provided additional clinically meaningful improvements in DQOL and overall functioning for patients with PDN. The robust and sustained benefits over 24 months, coupled with high participant satisfaction, highlight that 10-kHz SCS is an efficacious and comprehensive therapy for patients with PDN.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.