{"title":"Infinite families of 3-designs from special symmetric polynomials","authors":"Guangkui Xu, Xiwang Cao, Gaojun Luo, Huawei Wu","doi":"10.1007/s10623-024-01508-5","DOIUrl":null,"url":null,"abstract":"<p>Tang and Ding (IEEE Trans Inf Theory 67(1):244–254, 2021) opened a new direction of searching for <i>t</i>-designs from elementary symmetric polynomials, which are used to construct the first infinite family of linear codes supporting 4-designs. In this paper, we first study the properties of elementary symmetric polynomials with 6 or 7 variables over <span>\\(\\textrm{GF}(3^{m})\\)</span>. Based on them, we present more infinite families of 3-designs that contain some 3-designs with new parameters as checked by Magma for small numbers <i>m</i>. We also construct an infinite family of cyclic codes over <span>\\(\\textrm{GF}(q^2)\\)</span> and prove that the codewords of any nonzero weight support a 3-design. In particular, we present an infinite family of 6-dimensional AMDS codes over <span>\\(\\textrm{GF}(3^{2m})\\)</span> holding an infinite family of 3-designs and an infinite family of 7-dimensional NMDS codes over <span>\\(\\textrm{GF}(3^{2m})\\)</span> holding an infinite family of 3-designs.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"7 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01508-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Tang and Ding (IEEE Trans Inf Theory 67(1):244–254, 2021) opened a new direction of searching for t-designs from elementary symmetric polynomials, which are used to construct the first infinite family of linear codes supporting 4-designs. In this paper, we first study the properties of elementary symmetric polynomials with 6 or 7 variables over \(\textrm{GF}(3^{m})\). Based on them, we present more infinite families of 3-designs that contain some 3-designs with new parameters as checked by Magma for small numbers m. We also construct an infinite family of cyclic codes over \(\textrm{GF}(q^2)\) and prove that the codewords of any nonzero weight support a 3-design. In particular, we present an infinite family of 6-dimensional AMDS codes over \(\textrm{GF}(3^{2m})\) holding an infinite family of 3-designs and an infinite family of 7-dimensional NMDS codes over \(\textrm{GF}(3^{2m})\) holding an infinite family of 3-designs.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.