Machine Learning-Based Modeling of Celeration for Predicting Red-Light Violations

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mahmoud Masoud
{"title":"Machine Learning-Based Modeling of Celeration for Predicting Red-Light Violations","authors":"Mahmoud Masoud","doi":"10.1109/OJITS.2024.3467222","DOIUrl":null,"url":null,"abstract":"This research examines the intricate correlation between speed variation (celeration), a metric of driver behavior associated with vehicle control, and occurrences of running red lights. The study is based on a thorough analysis of a large dataset that includes a variety of parameters, such as exceeding speed limits, driver age, passenger count, weather, road condition, and temporal factors. Using cutting-edge machine learning methods like AdaBoost and Bagging, predictive models for red-light violations are painstakingly built, achieving remarkable validation accuracies of 90.4% and 90.1%, respectively. The study acknowledges the dataset’s limitations in capturing real-world traffic complexities while focusing on the effectiveness and trade-offs inherent in these methodologies. This emphasizes how important it is to have synchronized and thorough data sources to guarantee accurate representation. The research field is enhancing predictive modeling techniques and improving transportation safety by connecting celebration, speed variation patterns over time, with instances of red-light violations.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"608-616"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10693532","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10693532/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This research examines the intricate correlation between speed variation (celeration), a metric of driver behavior associated with vehicle control, and occurrences of running red lights. The study is based on a thorough analysis of a large dataset that includes a variety of parameters, such as exceeding speed limits, driver age, passenger count, weather, road condition, and temporal factors. Using cutting-edge machine learning methods like AdaBoost and Bagging, predictive models for red-light violations are painstakingly built, achieving remarkable validation accuracies of 90.4% and 90.1%, respectively. The study acknowledges the dataset’s limitations in capturing real-world traffic complexities while focusing on the effectiveness and trade-offs inherent in these methodologies. This emphasizes how important it is to have synchronized and thorough data sources to guarantee accurate representation. The research field is enhancing predictive modeling techniques and improving transportation safety by connecting celebration, speed variation patterns over time, with instances of red-light violations.
基于机器学习的 Celeration 建模用于预测闯红灯行为
本研究探讨了速度变化(celeration)与闯红灯之间错综复杂的相关性,速度变化是与车辆控制相关的驾驶员行为指标。该研究基于对大型数据集的全面分析,其中包括各种参数,如超速限制、驾驶员年龄、乘客人数、天气、路况和时间因素。利用 AdaBoost 和 Bagging 等尖端机器学习方法,经过艰苦努力,建立了闯红灯预测模型,验证准确率分别达到 90.4% 和 90.1%。该研究承认数据集在捕捉真实世界交通复杂性方面存在局限性,同时重点关注了这些方法固有的有效性和权衡。这强调了拥有同步和全面的数据源以保证准确表达的重要性。该研究领域正在通过将庆祝活动、速度随时间的变化规律与闯红灯事件联系起来,加强预测建模技术并改善交通安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信