Jian Lynn Lee, Noraida Mohamed Shah, Mohd Makmor-Bakry, Farida Islahudin, Hamidah Alias, Shamin Mohd Saffian
{"title":"Population Pharmacokinetic Model of Intravenous Immunoglobulin in Patients Treated for Various Immune System Disorders.","authors":"Jian Lynn Lee, Noraida Mohamed Shah, Mohd Makmor-Bakry, Farida Islahudin, Hamidah Alias, Shamin Mohd Saffian","doi":"10.1016/j.clinthera.2024.09.018","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Intravenous immunoglobulin (IVIG) is used to treat various immune system disorders, but the factors influencing its disposition are not well understood. This study aimed to estimate the population pharmacokinetic parameters of IVIG and to investigate the effect of genetic polymorphism of the FCGRT gene encoding the neonatal Fc receptor (FcRn) and clinical variability on the pharmacokinetic properties of IVIG in patients with immune system disorders.</p><p><strong>Methods: </strong>Patients were recruited from 4 hospitals in Malaysia. Clinical data were recorded, and blood samples were taken for pharmacokinetic and genetic studies. Population pharmacokinetic parameters were estimated by nonlinear mixed-effects modeling in Monolix. Age, weight, baseline immunoglobulin G concentration, ethnicity, sex, genotype, disease type, and comorbidity were investigated as potential covariates. Models were evaluated using the difference in objective function value, goodness-of-fit plots, visual predictive checks, and bootstrap analysis.</p><p><strong>Findings: </strong>A total of 292 blood samples were analyzed from 79 patients. The IVIG concentrations were best described by a 2-compartment model with linear elimination. Weight was found to be an important covariate for volume of distribution in the central compartment (Vc), volume of distribution in the peripheral compartment (Vp), and clearance in the central compartment, whereas disease type was found to be an important covariate for Vp. Goodness-of-fit plots indicated that the model fit the data adequately. Genetic polymorphism of the FCGRT gene encoding the neonatal Fc receptor did not affect the pharmacokinetic properties of IVIG.</p><p><strong>Implications: </strong>This study supports the use of dosage based on weight as per current practice. The study findings highlight that Vp is significantly influenced by the type of disease being treated with IVIG. This relationship suggests that different disease types, particularly inflammatory and autoimmune conditions, may alter tissue permeability and fluid distribution due to varying degrees of inflammation. Increased inflammation can lead to enhanced permeability and retention of IVIG in peripheral tissues, reflecting higher Vp values.</p>","PeriodicalId":10699,"journal":{"name":"Clinical therapeutics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.clinthera.2024.09.018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Intravenous immunoglobulin (IVIG) is used to treat various immune system disorders, but the factors influencing its disposition are not well understood. This study aimed to estimate the population pharmacokinetic parameters of IVIG and to investigate the effect of genetic polymorphism of the FCGRT gene encoding the neonatal Fc receptor (FcRn) and clinical variability on the pharmacokinetic properties of IVIG in patients with immune system disorders.
Methods: Patients were recruited from 4 hospitals in Malaysia. Clinical data were recorded, and blood samples were taken for pharmacokinetic and genetic studies. Population pharmacokinetic parameters were estimated by nonlinear mixed-effects modeling in Monolix. Age, weight, baseline immunoglobulin G concentration, ethnicity, sex, genotype, disease type, and comorbidity were investigated as potential covariates. Models were evaluated using the difference in objective function value, goodness-of-fit plots, visual predictive checks, and bootstrap analysis.
Findings: A total of 292 blood samples were analyzed from 79 patients. The IVIG concentrations were best described by a 2-compartment model with linear elimination. Weight was found to be an important covariate for volume of distribution in the central compartment (Vc), volume of distribution in the peripheral compartment (Vp), and clearance in the central compartment, whereas disease type was found to be an important covariate for Vp. Goodness-of-fit plots indicated that the model fit the data adequately. Genetic polymorphism of the FCGRT gene encoding the neonatal Fc receptor did not affect the pharmacokinetic properties of IVIG.
Implications: This study supports the use of dosage based on weight as per current practice. The study findings highlight that Vp is significantly influenced by the type of disease being treated with IVIG. This relationship suggests that different disease types, particularly inflammatory and autoimmune conditions, may alter tissue permeability and fluid distribution due to varying degrees of inflammation. Increased inflammation can lead to enhanced permeability and retention of IVIG in peripheral tissues, reflecting higher Vp values.
期刊介绍:
Clinical Therapeutics provides peer-reviewed, rapid publication of recent developments in drug and other therapies as well as in diagnostics, pharmacoeconomics, health policy, treatment outcomes, and innovations in drug and biologics research. In addition Clinical Therapeutics features updates on specific topics collated by expert Topic Editors. Clinical Therapeutics is read by a large international audience of scientists and clinicians in a variety of research, academic, and clinical practice settings. Articles are indexed by all major biomedical abstracting databases.