Muhammad Tariq, Sohail Ahmad, Ahmad Jan Mian, Houbing Song
{"title":"Deep Learning Aided Intelligent Reflective Surfaces for 6G: A Survey","authors":"Muhammad Tariq, Sohail Ahmad, Ahmad Jan Mian, Houbing Song","doi":"10.1145/3696414","DOIUrl":null,"url":null,"abstract":"The envisioned sixth-generation (6G) networks anticipate robust support for diverse applications, including massive machine-type communications, ultra-reliable low-latency communications, and enhanced mobile broadband. Intelligent Reflecting Surfaces (IRS) have emerged as a key technology capable of intelligently reconfiguring wireless propagation environments, thereby enhancing overall network performance. Traditional optimization techniques face limitations in meeting the stringent performance requirements of 6G networks due to the intricate and dynamic nature of the wireless environment. Consequently, Deep Learning (DL) techniques are employed within the IRS framework to optimize wireless system performance. This paper provides a comprehensive survey of the latest research in DL-aided IRS models, covering optimal beamforming, resource allocation control, channel estimation and prediction, signal detection, and system deployment. The focus is on presenting promising solutions within the constraints of different hardware configurations. The survey explores challenges, opportunities, and open research issues in DL-aided IRS, considering emerging technologies such as digital twins (DTs), computer vision (CV), blockchain, network function virtualization (NFC), integrated sensing and communication (ISAC), software-defined networking (SDN), mobile edge computing (MEC), unmanned aerial vehicles (UAVs), and non-orthogonal multiple access (NOMA). Practical design issues associated with these enabling technologies are also discussed, providing valuable insights into the current state and future directions of this evolving field.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"23 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3696414","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The envisioned sixth-generation (6G) networks anticipate robust support for diverse applications, including massive machine-type communications, ultra-reliable low-latency communications, and enhanced mobile broadband. Intelligent Reflecting Surfaces (IRS) have emerged as a key technology capable of intelligently reconfiguring wireless propagation environments, thereby enhancing overall network performance. Traditional optimization techniques face limitations in meeting the stringent performance requirements of 6G networks due to the intricate and dynamic nature of the wireless environment. Consequently, Deep Learning (DL) techniques are employed within the IRS framework to optimize wireless system performance. This paper provides a comprehensive survey of the latest research in DL-aided IRS models, covering optimal beamforming, resource allocation control, channel estimation and prediction, signal detection, and system deployment. The focus is on presenting promising solutions within the constraints of different hardware configurations. The survey explores challenges, opportunities, and open research issues in DL-aided IRS, considering emerging technologies such as digital twins (DTs), computer vision (CV), blockchain, network function virtualization (NFC), integrated sensing and communication (ISAC), software-defined networking (SDN), mobile edge computing (MEC), unmanned aerial vehicles (UAVs), and non-orthogonal multiple access (NOMA). Practical design issues associated with these enabling technologies are also discussed, providing valuable insights into the current state and future directions of this evolving field.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.