Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hongjun Wang, Sagar Vaze, Kai Han
{"title":"Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks","authors":"Hongjun Wang, Sagar Vaze, Kai Han","doi":"10.1007/s11263-024-02222-4","DOIUrl":null,"url":null,"abstract":"<p>Detecting test-time distribution shift has emerged as a key capability for safely deployed machine learning models, with the question being tackled under various guises in recent years. In this paper, we aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR). In particular, we aim to provide rigorous empirical analysis of different methods across settings and provide actionable takeaways for practitioners and researchers. Concretely, we make the following contributions: (i) We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them; (ii) We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR, re-evaluating state-of-the-art OOD detection and OSR methods in this setting; (iii) We surprisingly find that the best performing method on standard benchmarks (Outlier Exposure) struggles when tested at scale, while scoring rules which are sensitive to the deep feature magnitude consistently show promise; and (iv) We conduct empirical analysis to explain these phenomena and highlight directions for future research. Code: https://github.com/Visual-AI/Dissect-OOD-OSR</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"10 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02222-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting test-time distribution shift has emerged as a key capability for safely deployed machine learning models, with the question being tackled under various guises in recent years. In this paper, we aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR). In particular, we aim to provide rigorous empirical analysis of different methods across settings and provide actionable takeaways for practitioners and researchers. Concretely, we make the following contributions: (i) We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them; (ii) We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR, re-evaluating state-of-the-art OOD detection and OSR methods in this setting; (iii) We surprisingly find that the best performing method on standard benchmarks (Outlier Exposure) struggles when tested at scale, while scoring rules which are sensitive to the deep feature magnitude consistently show promise; and (iv) We conduct empirical analysis to explain these phenomena and highlight directions for future research. Code: https://github.com/Visual-AI/Dissect-OOD-OSR

Abstract Image

剖析分布外检测和开放集识别:对方法和基准的批判性分析
检测测试时间分布偏移已成为安全部署机器学习模型的一项关键能力,近年来,人们以各种名义解决这一问题。在本文中,我们将对这一领域中最大的两个子领域:分布偏离(OOD)检测和开放集识别(OSR)进行综合分析。特别是,我们旨在对不同环境下的不同方法进行严格的实证分析,并为从业人员和研究人员提供可操作的启示。具体而言,我们做出了以下贡献:(i) 我们在 OOD 检测和 OSR 设置中对最先进的方法进行了严格的交叉评估,并发现这两种方法的性能之间存在很强的相关性;(ii) 我们提出了一种新的大规模基准设置,我们认为这种设置能更好地将 OOD 检测和 OSR 所要解决的问题区分开来,并在这种设置中重新评估了最先进的 OOD 检测和 OSR 方法;(iii) 我们惊奇地发现,在标准基准上表现最好的方法(异常点暴露)在大规模测试时却举步维艰,而对深层特征大小敏感的评分规则却始终显示出良好的前景;以及 (iv) 我们进行了实证分析,以解释这些现象,并强调了未来的研究方向。代码:https://github.com/Visual-AI/Dissect-OOD-OSR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信