Biotic stress and yield stability in English organic silvoarable agroforestry

IF 6.4 1区 农林科学 Q1 AGRONOMY
Colin R. Tosh, Tom Staton, Ambrogio Costanzo, Will Simonson
{"title":"Biotic stress and yield stability in English organic silvoarable agroforestry","authors":"Colin R. Tosh,&nbsp;Tom Staton,&nbsp;Ambrogio Costanzo,&nbsp;Will Simonson","doi":"10.1007/s13593-024-00979-z","DOIUrl":null,"url":null,"abstract":"<div><p>In-field trees are thought to buffer arable crops from climate extremes through the creation of microclimates that may reduce the impacts of heat, wind, and cold. Much less is known about how trees and their biotic interactions (e.g. with natural enemies of pests and wild understory plants) impact crop yield stability to biotic stresses such as crop pests and disease. Modelling these interactions using conventional approaches is complex and time consuming, and we take a simplified approach, representing the agroecosystem as a Boolean regulatory network and parameterising Boolean functions using expert opinion. This allies our approach with decision analysis, which is increasingly finding applications in agriculture. Despite the naivety of our model, we demonstrate that it outputs complex and realistic agroecosystem dynamics. It predicts that, in English silvoarable, the biotic interactions of in-field trees boost arable crop yield overall, but they do not increase yield stability to biotic stress. Sensitivity analysis shows that arable crop yield is very sensitive to disease and weeds. We suggest that the focus of studies and debate on ecosystem service provision by English agroforestry needs to shift from natural enemies and pests to these ecosystem components. We discuss how our model can be improved through validation and parameterisation using real field data. Finally, we discuss how our approach can be used to rapidly model systems (agricultural or otherwise) than can be represented as dynamic interaction networks.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-024-00979-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-024-00979-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

In-field trees are thought to buffer arable crops from climate extremes through the creation of microclimates that may reduce the impacts of heat, wind, and cold. Much less is known about how trees and their biotic interactions (e.g. with natural enemies of pests and wild understory plants) impact crop yield stability to biotic stresses such as crop pests and disease. Modelling these interactions using conventional approaches is complex and time consuming, and we take a simplified approach, representing the agroecosystem as a Boolean regulatory network and parameterising Boolean functions using expert opinion. This allies our approach with decision analysis, which is increasingly finding applications in agriculture. Despite the naivety of our model, we demonstrate that it outputs complex and realistic agroecosystem dynamics. It predicts that, in English silvoarable, the biotic interactions of in-field trees boost arable crop yield overall, but they do not increase yield stability to biotic stress. Sensitivity analysis shows that arable crop yield is very sensitive to disease and weeds. We suggest that the focus of studies and debate on ecosystem service provision by English agroforestry needs to shift from natural enemies and pests to these ecosystem components. We discuss how our model can be improved through validation and parameterisation using real field data. Finally, we discuss how our approach can be used to rapidly model systems (agricultural or otherwise) than can be represented as dynamic interaction networks.

Abstract Image

英国有机可造林农林的生物压力和产量稳定性
人们认为,田间树木可通过创造小气候来缓冲极端气候对耕地作物的影响,从而减少热、风和寒冷的影响。但人们对树木及其生物相互作用(如与害虫天敌和野生林下植物的相互作用)如何影响作物产量稳定性以抵御害虫和疾病等生物胁迫的了解却少得多。使用传统方法对这些相互作用进行建模既复杂又耗时,因此我们采用简化方法,将农业生态系统表示为布尔调控网络,并使用专家意见对布尔函数进行参数化。这使我们的方法与决策分析相吻合,而决策分析在农业领域的应用日益广泛。尽管我们的模型很天真,但我们证明它能输出复杂而真实的农业生态系统动态。该模型预测,在英国可造林地区,田间树木的生物交互作用会提高可耕作物的总体产量,但不会提高产量对生物胁迫的稳定性。敏感性分析表明,耕地作物产量对疾病和杂草非常敏感。我们建议,有关英国农林业提供的生态系统服务的研究和讨论重点应从天敌和害虫转向这些生态系统组成部分。我们讨论了如何通过使用真实田间数据进行验证和参数化来改进我们的模型。最后,我们将讨论如何利用我们的方法快速建立可表示为动态交互网络的系统(农业或其他)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agronomy for Sustainable Development
Agronomy for Sustainable Development 农林科学-农艺学
CiteScore
10.70
自引率
8.20%
发文量
108
审稿时长
3 months
期刊介绍: Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences. ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels. Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信