Differentiating and Integrating ZX Diagrams with Applications to Quantum Machine Learning

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-10-04 DOI:10.22331/q-2024-10-04-1491
Quanlong Wang, Richie Yeung, Mark Koch
{"title":"Differentiating and Integrating ZX Diagrams with Applications to Quantum Machine Learning","authors":"Quanlong Wang, Richie Yeung, Mark Koch","doi":"10.22331/q-2024-10-04-1491","DOIUrl":null,"url":null,"abstract":"ZX-calculus has proved to be a useful tool for quantum technology with a wide range of successful applications. Most of these applications are of an algebraic nature. However, other tasks that involve differentiation and integration remain unreachable with current ZX techniques. Here we elevate ZX to an analytical perspective by realising differentiation and integration entirely within the framework of ZX-calculus. We explicitly illustrate the new analytic framework of ZX-calculus by applying it in context of quantum machine learning for the analysis of barren plateaus.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"20 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-04-1491","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ZX-calculus has proved to be a useful tool for quantum technology with a wide range of successful applications. Most of these applications are of an algebraic nature. However, other tasks that involve differentiation and integration remain unreachable with current ZX techniques. Here we elevate ZX to an analytical perspective by realising differentiation and integration entirely within the framework of ZX-calculus. We explicitly illustrate the new analytic framework of ZX-calculus by applying it in context of quantum machine learning for the analysis of barren plateaus.
区分和整合 ZX 图表并将其应用于量子机器学习
ZX 微积分已被证明是量子技术的有用工具,有着广泛的成功应用。这些应用大多具有代数性质。然而,其他涉及微分和积分的任务,目前的 ZX 技术仍无法实现。在这里,我们将 ZX 提升到分析的角度,完全在 ZX 微积分的框架内实现微分和积分。我们将 ZX 微积分的新分析框架明确地应用于量子机器学习中的贫瘠高原分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信