Mixed-state additivity properties of magic monotones based on quantum relative entropies for single-qubit states and beyond

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-10-04 DOI:10.22331/q-2024-10-04-1492
Roberto Rubboli, Ryuji Takagi, Marco Tomamichel
{"title":"Mixed-state additivity properties of magic monotones based on quantum relative entropies for single-qubit states and beyond","authors":"Roberto Rubboli, Ryuji Takagi, Marco Tomamichel","doi":"10.22331/q-2024-10-04-1492","DOIUrl":null,"url":null,"abstract":"We prove that the stabilizer fidelity is multiplicative for the tensor product of an arbitrary number of single-qubit states. We also show that the relative entropy of magic becomes additive if all the single-qubit states but one belong to a symmetry axis of the stabilizer octahedron. We extend the latter results to include all the $\\alpha$-$z$ Rényi relative entropy of magic. This allows us to identify a continuous set of magic monotones that are additive for single-qubit states. We also show that all the monotones mentioned above are additive for several standard two and three-qubit states subject to depolarizing noise. Finally, we obtain closed-form expressions for several states and tighter lower bounds for the overhead of probabilistic one-shot magic state distillation.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"223 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-04-1492","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the stabilizer fidelity is multiplicative for the tensor product of an arbitrary number of single-qubit states. We also show that the relative entropy of magic becomes additive if all the single-qubit states but one belong to a symmetry axis of the stabilizer octahedron. We extend the latter results to include all the $\alpha$-$z$ Rényi relative entropy of magic. This allows us to identify a continuous set of magic monotones that are additive for single-qubit states. We also show that all the monotones mentioned above are additive for several standard two and three-qubit states subject to depolarizing noise. Finally, we obtain closed-form expressions for several states and tighter lower bounds for the overhead of probabilistic one-shot magic state distillation.
基于单量子比特态及其他量子相对熵的神奇单调的混态相加特性
我们证明,对于任意数量的单量子比特态的张量乘积,稳定器保真度是乘性的。我们还证明,如果除一个状态之外的所有单量子比特状态都属于稳定器八面体的一个对称轴,那么魔力的相对熵就会变成加法。我们将后一个结果扩展到包括所有 $\alpha$-z$ 雷尼相对熵。这样,我们就能确定一组连续的、对单量子比特态具有相加性的魔力单调。我们还证明,上述所有单调对于几种受去极化噪声影响的标准双量子比特和三量子比特状态都是可加的。最后,我们得到了几种状态的闭式表达式,以及概率单次魔态蒸馏开销的更严格下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信