Rong Luo, Mingliang Yan, Sihem Mesnager, Dongchun Han
{"title":"On Abelian one-dimensional hull codes in group algebras","authors":"Rong Luo, Mingliang Yan, Sihem Mesnager, Dongchun Han","doi":"10.1007/s10623-024-01504-9","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on hull dimensional codes obtained by the intersection of linear codes and their dual. These codes were introduced by Assmus and Key and have been the subject of significant theoretical and practical research over the years, gaining increased attention in recent years. Let <span>\\(\\mathbb {F}_q\\)</span> denote the finite field with <i>q</i> elements, and let <i>G</i> be a finite Abelian group of order <i>n</i>. The paper investigates Abelian codes defined as ideals of the group algebra <span>\\(\\mathbb {F}_qG\\)</span> with coefficients in <span>\\(\\mathbb {F}_q\\)</span>. Specifically, it delves into Abelian hull dimensional codes in the group algebra <span>\\(\\mathbb {F}_qG\\)</span>, where <i>G</i> is a finite Abelian group of order <i>n</i> with <span>\\(\\gcd (n,q)=1\\)</span>. Specifically, we first examine general hull Abelian codes and then narrow its focus to Abelian one-dimensional hull codes. Next, we focus on Abelian one-dimensional hull codes and present some necessary and sufficient conditions for characterizing them. Consequently, we generalize a recent result on Abelian codes and show that no binary or ternary Abelian codes with one-dimensional hulls exist. Furthermore, we construct Abelian codes with one-dimensional hulls by generating idempotents, derive optimal ones with one-dimensional hulls, and establish several existing results of Abelian codes with one-dimensional hulls. Finally, we develop enumeration results through a simple formula that counts Abelian codes with one-dimensional hulls in <span>\\(\\mathbb {F}_qG\\)</span>. These achievements exploit the rich algebraic structure of those Abelian codes and enhance and increase our knowledge of them by considering their hull dimensions, reducing the gap between their interests and our understanding of them.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01504-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on hull dimensional codes obtained by the intersection of linear codes and their dual. These codes were introduced by Assmus and Key and have been the subject of significant theoretical and practical research over the years, gaining increased attention in recent years. Let \(\mathbb {F}_q\) denote the finite field with q elements, and let G be a finite Abelian group of order n. The paper investigates Abelian codes defined as ideals of the group algebra \(\mathbb {F}_qG\) with coefficients in \(\mathbb {F}_q\). Specifically, it delves into Abelian hull dimensional codes in the group algebra \(\mathbb {F}_qG\), where G is a finite Abelian group of order n with \(\gcd (n,q)=1\). Specifically, we first examine general hull Abelian codes and then narrow its focus to Abelian one-dimensional hull codes. Next, we focus on Abelian one-dimensional hull codes and present some necessary and sufficient conditions for characterizing them. Consequently, we generalize a recent result on Abelian codes and show that no binary or ternary Abelian codes with one-dimensional hulls exist. Furthermore, we construct Abelian codes with one-dimensional hulls by generating idempotents, derive optimal ones with one-dimensional hulls, and establish several existing results of Abelian codes with one-dimensional hulls. Finally, we develop enumeration results through a simple formula that counts Abelian codes with one-dimensional hulls in \(\mathbb {F}_qG\). These achievements exploit the rich algebraic structure of those Abelian codes and enhance and increase our knowledge of them by considering their hull dimensions, reducing the gap between their interests and our understanding of them.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.