Dominique Chatain , Blandine Courtois , Saba Ahmad , Gerhard Dehm , Christina Scheu , Clémence Badie , Lionel Santinacci
{"title":"A potential mechanism for abnormal grain growth in Ni thin films on c-sapphire","authors":"Dominique Chatain , Blandine Courtois , Saba Ahmad , Gerhard Dehm , Christina Scheu , Clémence Badie , Lionel Santinacci","doi":"10.1016/j.actamat.2024.120451","DOIUrl":null,"url":null,"abstract":"<div><div>Normal grain growth (NGG) of a (111) textured Ni film on c-sapphire and abnormal grain growth (AGG) of (100) grains at the expense of this (111) texture has been studied as a function of temperature with and without a capping layer. The grain boundaries (GBs) in the Ni film are controlled by the preferred orientation relationships (ORs) adopted by the Ni grains on the sapphire substrate. The 2 variants of a single OR, Ni(111)<<span><math><mrow><mn>1</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></math></span>>//Al<sub>2</sub>O<sub>3</sub>(0001)<<span><math><mrow><mn>1</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>00</mn></mrow></math></span>>, form a (111) mazed bicrystal with Σ3 GBs. The (100) grains have a single OR, Ni(100)<010>//Al<sub>2</sub>O<sub>3</sub>(0001)<<span><math><mrow><mn>1</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>00</mn></mrow></math></span>> with 3 variants; their GBs within the (111) grains have the (111)<<span><math><mrow><mn>1</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></math></span>>//(100)<010> misorientation.</div><div>(100) AGG within the (111) mazed bicrystal of the 100 nm Ni film takes place above 1023 K. The orientation transition is driven by the biaxial elastic modulus anisotropy which favors the growth of (100) grains over (111) grains, as this reduces the elastic strain energy induced by the thermal mismatch between Ni and sapphire. (100) AGG is suppressed and the NGG of the (111) texture is slowed down when the film is covered by a 10 nm amorphous alumina layer aimed at inhibiting surface diffusion. Thus, it is proposed that as long as the surface can act as a sink for the point defects diffusing along the GBs, the movement of the GBs is correlated to the diffusivity of atoms and vacancies, which is a function of their misorientation and crystallographic GB structure.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"281 ","pages":"Article 120451"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Normal grain growth (NGG) of a (111) textured Ni film on c-sapphire and abnormal grain growth (AGG) of (100) grains at the expense of this (111) texture has been studied as a function of temperature with and without a capping layer. The grain boundaries (GBs) in the Ni film are controlled by the preferred orientation relationships (ORs) adopted by the Ni grains on the sapphire substrate. The 2 variants of a single OR, Ni(111)<>//Al2O3(0001)<>, form a (111) mazed bicrystal with Σ3 GBs. The (100) grains have a single OR, Ni(100)<010>//Al2O3(0001)<> with 3 variants; their GBs within the (111) grains have the (111)<>//(100)<010> misorientation.
(100) AGG within the (111) mazed bicrystal of the 100 nm Ni film takes place above 1023 K. The orientation transition is driven by the biaxial elastic modulus anisotropy which favors the growth of (100) grains over (111) grains, as this reduces the elastic strain energy induced by the thermal mismatch between Ni and sapphire. (100) AGG is suppressed and the NGG of the (111) texture is slowed down when the film is covered by a 10 nm amorphous alumina layer aimed at inhibiting surface diffusion. Thus, it is proposed that as long as the surface can act as a sink for the point defects diffusing along the GBs, the movement of the GBs is correlated to the diffusivity of atoms and vacancies, which is a function of their misorientation and crystallographic GB structure.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.