SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI.

Zhuo-Xu Cui, Chentao Cao, Yue Wang, Sen Jia, Jing Cheng, Xin Liu, Hairong Zheng, Dong Liang, Yanjie Zhu
{"title":"SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI.","authors":"Zhuo-Xu Cui, Chentao Cao, Yue Wang, Sen Jia, Jing Cheng, Xin Liu, Hairong Zheng, Dong Liang, Yanjie Zhu","doi":"10.1109/TMI.2024.3473009","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion models have emerged as a leading methodology for image generation and have proven successful in the realm of magnetic resonance imaging (MRI) reconstruction. However, existing reconstruction methods based on diffusion models are primarily formulated in the image domain, making the reconstruction quality susceptible to inaccuracies in coil sensitivity maps (CSMs). k-space interpolation methods can effectively address this issue but conventional diffusion models are not readily applicable in k-space interpolation. To overcome this challenge, we introduce a novel approach called SPIRiT-Diffusion, which is a diffusion model for k-space interpolation inspired by the iterative self-consistent SPIRiT method. Specifically, we utilize the iterative solver of the self-consistent term (i.e., k-space physical prior) in SPIRiT to formulate a novel stochastic differential equation (SDE) governing the diffusion process. Subsequently, k-space data can be interpolated by executing the diffusion process. This innovative approach highlights the optimization model's role in designing the SDE in diffusion models, enabling the diffusion process to align closely with the physics inherent in the optimization model-a concept referred to as model-driven diffusion. We evaluated the proposed SPIRiT-Diffusion method using a 3D joint intracranial and carotid vessel wall imaging dataset. The results convincingly demonstrate its superiority over image-domain reconstruction methods, achieving high reconstruction quality even at a substantial acceleration rate of 10. Our code are available at https://github.com/zhyjSIAT/SPIRiT-Diffusion.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3473009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion models have emerged as a leading methodology for image generation and have proven successful in the realm of magnetic resonance imaging (MRI) reconstruction. However, existing reconstruction methods based on diffusion models are primarily formulated in the image domain, making the reconstruction quality susceptible to inaccuracies in coil sensitivity maps (CSMs). k-space interpolation methods can effectively address this issue but conventional diffusion models are not readily applicable in k-space interpolation. To overcome this challenge, we introduce a novel approach called SPIRiT-Diffusion, which is a diffusion model for k-space interpolation inspired by the iterative self-consistent SPIRiT method. Specifically, we utilize the iterative solver of the self-consistent term (i.e., k-space physical prior) in SPIRiT to formulate a novel stochastic differential equation (SDE) governing the diffusion process. Subsequently, k-space data can be interpolated by executing the diffusion process. This innovative approach highlights the optimization model's role in designing the SDE in diffusion models, enabling the diffusion process to align closely with the physics inherent in the optimization model-a concept referred to as model-driven diffusion. We evaluated the proposed SPIRiT-Diffusion method using a 3D joint intracranial and carotid vessel wall imaging dataset. The results convincingly demonstrate its superiority over image-domain reconstruction methods, achieving high reconstruction quality even at a substantial acceleration rate of 10. Our code are available at https://github.com/zhyjSIAT/SPIRiT-Diffusion.

SPIRiT-Diffusion:用于加速核磁共振成像的自一致性驱动扩散模型
扩散模型已成为图像生成的主要方法,并在磁共振成像(MRI)重建领域取得了成功。然而,现有的基于扩散模型的重建方法主要是在图像域中制定的,因此重建质量容易受到线圈灵敏度图(CSM)不准确的影响。k 空间插值方法可以有效解决这一问题,但传统的扩散模型在 k 空间插值中并不适用。为了克服这一难题,我们引入了一种名为 SPIRiT-Diffusion 的新方法,它是受迭代自洽 SPIRiT 方法启发而产生的 k 空间插值扩散模型。具体来说,我们利用 SPIRiT 中的自洽项(即 k 空间物理先验项)迭代求解器,制定了一个管理扩散过程的新型随机微分方程(SDE)。随后,可通过执行扩散过程对 k 空间数据进行插值。这种创新方法突出了优化模型在设计扩散模型中的 SDE 时所扮演的角色,使扩散过程与优化模型中固有的物理过程紧密结合--这一概念被称为模型驱动扩散。我们使用三维颅内和颈动脉血管壁联合成像数据集对所提出的 SPIRiT-Diffusion 方法进行了评估。结果令人信服地证明了该方法优于图像域重建方法,即使在 10 倍的大幅加速率下也能达到很高的重建质量。我们的代码见 https://github.com/zhyjSIAT/SPIRiT-Diffusion。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信