{"title":"Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skins.","authors":"Dong Yeon Kim, Young-Hee Kang, Min-Kyung Kang","doi":"10.1007/s00109-024-02491-z","DOIUrl":null,"url":null,"abstract":"<p><p>Skin wound healing is a complex process involving various cellular and molecular events. However, chronic wounds, particularly in individuals with diabetes, often experience delayed wound healing, potentially leading to diabetic skin complications. In this study, we examined the effects of umbelliferone on skin wound healing using dermal fibroblasts and skin tissues from a type 2 diabetic mouse model. Our results demonstrate that umbelliferone enhances several crucial aspects of wound healing. It increases the synthesis of key extracellular matrix components such as collagen I and fibronectin, as well as proteins involved in cell migration like EVL and Fascin-1. Additionally, umbelliferone boosts the secretion of angiogenesis factors VEGF and HIF-1α, enhances the expression of cell adhesion proteins including E-cadherin, ZO-1, and Occludin, and elevates levels of skin hydration-related proteins like HAS2 and AQP3. Notably, umbelliferone reduces the expression of HYAL, thereby potentially decreasing tissue permeability. As a result, it promotes extracellular matrix deposition, activates cell migration and proliferation, and stimulates pro-angiogenic factors while maintaining skin barrier functions. In summary, these findings underscore the therapeutic potential of umbelliferone in diabetic wound care, suggesting its promise as a treatment for diabetic skin complications. KEY MESSAGES: Umbelliferone suppressed the breakdown of extracellular matrix components in the skin dermis while promoting their synthesis. Umbelliferone augmented the migratory and proliferative capacities of fibroblasts. Umbelliferone activated the release of angiogenic factors in diabetic wounds, leading to accelerated wound healing. Umbelliferone bolstered intercellular adhesion and reinforced the skin barrier by preventing moisture loss and preserving skin hydration.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1457-1470"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-024-02491-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Skin wound healing is a complex process involving various cellular and molecular events. However, chronic wounds, particularly in individuals with diabetes, often experience delayed wound healing, potentially leading to diabetic skin complications. In this study, we examined the effects of umbelliferone on skin wound healing using dermal fibroblasts and skin tissues from a type 2 diabetic mouse model. Our results demonstrate that umbelliferone enhances several crucial aspects of wound healing. It increases the synthesis of key extracellular matrix components such as collagen I and fibronectin, as well as proteins involved in cell migration like EVL and Fascin-1. Additionally, umbelliferone boosts the secretion of angiogenesis factors VEGF and HIF-1α, enhances the expression of cell adhesion proteins including E-cadherin, ZO-1, and Occludin, and elevates levels of skin hydration-related proteins like HAS2 and AQP3. Notably, umbelliferone reduces the expression of HYAL, thereby potentially decreasing tissue permeability. As a result, it promotes extracellular matrix deposition, activates cell migration and proliferation, and stimulates pro-angiogenic factors while maintaining skin barrier functions. In summary, these findings underscore the therapeutic potential of umbelliferone in diabetic wound care, suggesting its promise as a treatment for diabetic skin complications. KEY MESSAGES: Umbelliferone suppressed the breakdown of extracellular matrix components in the skin dermis while promoting their synthesis. Umbelliferone augmented the migratory and proliferative capacities of fibroblasts. Umbelliferone activated the release of angiogenic factors in diabetic wounds, leading to accelerated wound healing. Umbelliferone bolstered intercellular adhesion and reinforced the skin barrier by preventing moisture loss and preserving skin hydration.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.