Stefania Pirrotta, Laura Masatti, Anna Bortolato, Anna Corrà, Fabiola Pedrini, Martina Aere, Giovanni Esposito, Paolo Martini, Davide Risso, Chiara Romualdi, Enrica Calura
{"title":"Exploring public cancer gene expression signatures across bulk, single-cell and spatial transcriptomics data with signifinder Bioconductor package.","authors":"Stefania Pirrotta, Laura Masatti, Anna Bortolato, Anna Corrà, Fabiola Pedrini, Martina Aere, Giovanni Esposito, Paolo Martini, Davide Risso, Chiara Romualdi, Enrica Calura","doi":"10.1093/nargab/lqae138","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding cancer mechanisms, defining subtypes, predicting prognosis and assessing therapy efficacy are crucial aspects of cancer research. Gene-expression signatures derived from bulk gene expression data have played a significant role in these endeavors over the past decade. However, recent advancements in high-resolution transcriptomic technologies, such as single-cell RNA sequencing and spatial transcriptomics, have revealed the complex cellular heterogeneity within tumors, necessitating the development of computational tools to characterize tumor mass heterogeneity accurately. Thus we implemented signifinder, a novel R Bioconductor package designed to streamline the collection and use of cancer transcriptional signatures across bulk, single-cell, and spatial transcriptomics data. Leveraging publicly available signatures curated by signifinder, users can assess a wide range of tumor characteristics, including hallmark processes, therapy responses, and tumor microenvironment peculiarities. Through three case studies, we demonstrate the utility of transcriptional signatures in bulk, single-cell, and spatial transcriptomic data analyses, providing insights into cell-resolution transcriptional signatures in oncology. Signifinder represents a significant advancement in cancer transcriptomic data analysis, offering a comprehensive framework for interpreting high-resolution data and addressing tumor complexity.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae138"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding cancer mechanisms, defining subtypes, predicting prognosis and assessing therapy efficacy are crucial aspects of cancer research. Gene-expression signatures derived from bulk gene expression data have played a significant role in these endeavors over the past decade. However, recent advancements in high-resolution transcriptomic technologies, such as single-cell RNA sequencing and spatial transcriptomics, have revealed the complex cellular heterogeneity within tumors, necessitating the development of computational tools to characterize tumor mass heterogeneity accurately. Thus we implemented signifinder, a novel R Bioconductor package designed to streamline the collection and use of cancer transcriptional signatures across bulk, single-cell, and spatial transcriptomics data. Leveraging publicly available signatures curated by signifinder, users can assess a wide range of tumor characteristics, including hallmark processes, therapy responses, and tumor microenvironment peculiarities. Through three case studies, we demonstrate the utility of transcriptional signatures in bulk, single-cell, and spatial transcriptomic data analyses, providing insights into cell-resolution transcriptional signatures in oncology. Signifinder represents a significant advancement in cancer transcriptomic data analysis, offering a comprehensive framework for interpreting high-resolution data and addressing tumor complexity.