Daniela Alvarado-Jiménez, Andrea Pietropolli Charmet, Paolo Stoppa, Nicola Tasinato
{"title":"The Radiative Efficiency and Global Warming Potential of HCFC-132b.","authors":"Daniela Alvarado-Jiménez, Andrea Pietropolli Charmet, Paolo Stoppa, Nicola Tasinato","doi":"10.1002/cphc.202400632","DOIUrl":null,"url":null,"abstract":"<p><p>Hydro-chloro-fluoro-carbons (HCFCs) are potent greenhouse gases which strongly absorb the infrared (IR) radiation within the 8-12 μm atmospheric windows. Despite international policies schedule their phasing out by 2020 for developed countries and 2030 globally, HCFC-132b (CH<sub>2</sub>ClCClF<sub>2</sub>) has been recently detected with significant atmospheric concentration. In this scenario, detailed climate metrics are of paramount importance for understanding the capacity of anthropogenic pollutants to contribute to global warming. In this work, the radiative efficiency (RE) of HCFC-132b is experimentally measured for the first time and used to determine its global warming potential (GWP) over 20-, 100- and 500-year time horizon. Vibrational- and rotational-spectroscopic properties of this molecule are first characterized by exploiting a synergism between Fourier-transform IR (FTIR) spectroscopy experiments and quantum chemical calculations. Equilibrium geometry, rotational parameters and vibrational properties predicted theoretically beyond the double-harmonic approximation are employed to assist the vibrational assignment of the experimental trace. Finally, FTIR spectra measured over a range of pressures are used to determine the HCFC-132b absorption cross section spectrum from 150 to 3000 cm<sup>-1</sup>, from which istantaneous and effective REs are derived and, in turn, used for GWP evaluation.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400632"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400632","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydro-chloro-fluoro-carbons (HCFCs) are potent greenhouse gases which strongly absorb the infrared (IR) radiation within the 8-12 μm atmospheric windows. Despite international policies schedule their phasing out by 2020 for developed countries and 2030 globally, HCFC-132b (CH2ClCClF2) has been recently detected with significant atmospheric concentration. In this scenario, detailed climate metrics are of paramount importance for understanding the capacity of anthropogenic pollutants to contribute to global warming. In this work, the radiative efficiency (RE) of HCFC-132b is experimentally measured for the first time and used to determine its global warming potential (GWP) over 20-, 100- and 500-year time horizon. Vibrational- and rotational-spectroscopic properties of this molecule are first characterized by exploiting a synergism between Fourier-transform IR (FTIR) spectroscopy experiments and quantum chemical calculations. Equilibrium geometry, rotational parameters and vibrational properties predicted theoretically beyond the double-harmonic approximation are employed to assist the vibrational assignment of the experimental trace. Finally, FTIR spectra measured over a range of pressures are used to determine the HCFC-132b absorption cross section spectrum from 150 to 3000 cm-1, from which istantaneous and effective REs are derived and, in turn, used for GWP evaluation.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.