Enzymatic Synthesis of Isotopically Labeled Hydrogen Peroxide for Mass Spectrometry-Based Applications.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Margaret Hoare, Ruiyue Tan, Isabella Militi, Kevin A Welle, Kyle Swovick, Jennifer R Hryhorenko, Sina Ghaemmaghami
{"title":"Enzymatic Synthesis of Isotopically Labeled Hydrogen Peroxide for Mass Spectrometry-Based Applications.","authors":"Margaret Hoare, Ruiyue Tan, Isabella Militi, Kevin A Welle, Kyle Swovick, Jennifer R Hryhorenko, Sina Ghaemmaghami","doi":"10.1021/jasms.4c00326","DOIUrl":null,"url":null,"abstract":"<p><p>Methionine oxidation is involved in multiple biological processes including protein misfolding and enzyme regulation. However, it is often challenging to measure levels of methionine oxidation by mass spectrometry, in part due to the prevalence of artifactual oxidation that occurs during the sample preparation and ionization steps of typical proteomic workflows. Isotopically labeled hydrogen peroxide (H<sub>2</sub><sup>18</sup>O<sub>2</sub>) can be used to block unoxidized methionines and enables accurate measurement of <i>in vivo</i> levels of methionine oxidation. However, H<sub>2</sub><sup>18</sup>O<sub>2</sub> is an expensive reagent that can be difficult to obtain from commercial sources. Here, we report a method for synthesizing H<sub>2</sub><sup>18</sup>O<sub>2</sub> in-house. Glucose oxidase catalyzes the oxidation of β-d-glucose and produces hydrogen peroxide in the process. We took advantage of this reaction to enzymatically synthesize H<sub>2</sub><sup>18</sup>O<sub>2</sub> from <sup>18</sup>O<sub>2</sub> and assessed its concentration, purity, and utility in measuring methionine oxidation levels by mass spectrometry.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00326","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Methionine oxidation is involved in multiple biological processes including protein misfolding and enzyme regulation. However, it is often challenging to measure levels of methionine oxidation by mass spectrometry, in part due to the prevalence of artifactual oxidation that occurs during the sample preparation and ionization steps of typical proteomic workflows. Isotopically labeled hydrogen peroxide (H218O2) can be used to block unoxidized methionines and enables accurate measurement of in vivo levels of methionine oxidation. However, H218O2 is an expensive reagent that can be difficult to obtain from commercial sources. Here, we report a method for synthesizing H218O2 in-house. Glucose oxidase catalyzes the oxidation of β-d-glucose and produces hydrogen peroxide in the process. We took advantage of this reaction to enzymatically synthesize H218O2 from 18O2 and assessed its concentration, purity, and utility in measuring methionine oxidation levels by mass spectrometry.

基于质谱应用的同位素标记过氧化氢的酶法合成。
蛋氨酸氧化参与多种生物过程,包括蛋白质错误折叠和酶调控。然而,用质谱法测量蛋氨酸氧化水平往往具有挑战性,部分原因是在典型蛋白质组学工作流程的样品制备和电离步骤中普遍存在人为氧化现象。同位素标记的过氧化氢(H218O2)可用于阻断未氧化的蛋氨酸,从而准确测量体内蛋氨酸的氧化水平。然而,H218O2 是一种昂贵的试剂,很难从商业渠道获得。在此,我们报告了一种内部合成 H218O2 的方法。葡萄糖氧化酶催化β-d-葡萄糖氧化,并在此过程中产生过氧化氢。我们利用这一反应从 18O2 酶法合成了 H218O2,并评估了其浓度、纯度以及通过质谱法测量蛋氨酸氧化水平的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信