Observation-based quantification of aerosol transport using optical flow: A satellite perspective to characterize interregional transport of atmospheric pollution
Tianhao Zhang , Yu Gu , Bin Zhao , Lunche Wang , Zhongmin Zhu , Yun Lin , Xing Chang , Xinghui Xia , Zhe Jiang , Hongrong Shi , Wei Gong
{"title":"Observation-based quantification of aerosol transport using optical flow: A satellite perspective to characterize interregional transport of atmospheric pollution","authors":"Tianhao Zhang , Yu Gu , Bin Zhao , Lunche Wang , Zhongmin Zhu , Yun Lin , Xing Chang , Xinghui Xia , Zhe Jiang , Hongrong Shi , Wei Gong","doi":"10.1016/j.rse.2024.114457","DOIUrl":null,"url":null,"abstract":"<div><div>Interregional transport plays a significant role in haze formation with varying and disputable contribution extent. Current research on quantitatively analyzing interregional atmospheric pollution transport has mainly relied on meteorological and chemical models. However, these models are typically affected by uncertainties due to the assumptions and simplifications inherent in the numerical simulations and source emission estimations. In this study, a comprehensive optical flow framework is developed to offer a new perspective on quantitative characterization of interregional transport of atmospheric pollution based on synergistic observations from geostationary and sun-synchronous satellites. In this framework, the high-frequency continuous aerosol observing images are regarded as video in computer vision, and an aerosol dynamic optical flow algorithm is proposed by incorporating aerosol-specific assumptions and constraints, overcoming the limitation that traditional optical flow methods are typically confined to rigid bodies. Results demonstrate that the developed optical flow framework could distinguish the aerosol transport process from other dynamic processes of aerosol development and accurately capture the fast-changing details of transport processes. Moreover, the satellite-based optical flow framework achieves aerosol transport results comparable to those of widely accepted model-based methods, demonstrating the physical interpretation of pixel-based optical flow results and highlighting its effectiveness in quantitative characterization of the atmospheric pollution transport process via the Aerosol Transport Index (ATI). Furthermore, a case analysis of long-term assessments of interregional transport of atmospheric pollution indicates that Beijing acts as a “sink” of atmospheric pollution, and a downward trend could be found from the annually averaged transported aerosol net loadings due to the emission reduction policy. Compared with model-based methods, the satellite-based optical flow framework is directly grounded in observations and does not rely on emission inventories that take years to update. Therefore, it not only helps improve understanding the patterns of atmospheric pollution interregional transport, but also provides a more efficient and economical way to assess the effectiveness of regional joint control policy.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114457"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004838","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Interregional transport plays a significant role in haze formation with varying and disputable contribution extent. Current research on quantitatively analyzing interregional atmospheric pollution transport has mainly relied on meteorological and chemical models. However, these models are typically affected by uncertainties due to the assumptions and simplifications inherent in the numerical simulations and source emission estimations. In this study, a comprehensive optical flow framework is developed to offer a new perspective on quantitative characterization of interregional transport of atmospheric pollution based on synergistic observations from geostationary and sun-synchronous satellites. In this framework, the high-frequency continuous aerosol observing images are regarded as video in computer vision, and an aerosol dynamic optical flow algorithm is proposed by incorporating aerosol-specific assumptions and constraints, overcoming the limitation that traditional optical flow methods are typically confined to rigid bodies. Results demonstrate that the developed optical flow framework could distinguish the aerosol transport process from other dynamic processes of aerosol development and accurately capture the fast-changing details of transport processes. Moreover, the satellite-based optical flow framework achieves aerosol transport results comparable to those of widely accepted model-based methods, demonstrating the physical interpretation of pixel-based optical flow results and highlighting its effectiveness in quantitative characterization of the atmospheric pollution transport process via the Aerosol Transport Index (ATI). Furthermore, a case analysis of long-term assessments of interregional transport of atmospheric pollution indicates that Beijing acts as a “sink” of atmospheric pollution, and a downward trend could be found from the annually averaged transported aerosol net loadings due to the emission reduction policy. Compared with model-based methods, the satellite-based optical flow framework is directly grounded in observations and does not rely on emission inventories that take years to update. Therefore, it not only helps improve understanding the patterns of atmospheric pollution interregional transport, but also provides a more efficient and economical way to assess the effectiveness of regional joint control policy.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.