Danyang Lin , Jixu Hu , Renhao Wu , Yazhou Liu , Xiaoqing Li , Man Jae SaGong , Caiwang Tan , Xiaoguo Song , Hyoung Seop Kim
{"title":"Multiscale plastic deformation in additively manufactured FeCoCrNiMox high-entropy alloys to achieve strength–ductility synergy at elevated temperatures","authors":"Danyang Lin , Jixu Hu , Renhao Wu , Yazhou Liu , Xiaoqing Li , Man Jae SaGong , Caiwang Tan , Xiaoguo Song , Hyoung Seop Kim","doi":"10.1016/j.ijplas.2024.104142","DOIUrl":null,"url":null,"abstract":"<div><div>The application of structural metals in extreme environments necessitates materials with superior mechanical properties. Mo-doped FeCoCrNi high-entropy alloys (HEAs) have emerged as potential candidates for use in such demanding environments. This study investigates the high-temperature performance of FeCoCrNiMo<em><sub>x</sub></em> HEAs with varying Mo contents (<em>x</em> = 0, 0.1, 0.3, and 0.5) prepared by laser powder bed fusion additive manufacturing. The mechanical properties were evaluated at room and 600 °C temperatures, and the microstructures were characterized using scanning electron microscopy, electron backscatter diffraction, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The intrinsic dislocation cell patterning, solid-solution strengthening, nanoprecipitation, and twinning effects collectively modulated the plastic deformation behavior of the samples. The high-temperature mechanical performance was comprehensively analyzed in conjunction with <em>ab initio</em> calculations and molecular dynamics simulations to reveal the origin of the experimentally observed strength–ductility synergy of FeCoCrNiMo<sub>0.3</sub>. This study has significant implications for FeCoCrNiMo<em><sub>x</sub></em> HEAs and extends our understanding of the structural origins of the exceptional mechanical properties of additively manufactured HEAs.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"183 ","pages":"Article 104142"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002699","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The application of structural metals in extreme environments necessitates materials with superior mechanical properties. Mo-doped FeCoCrNi high-entropy alloys (HEAs) have emerged as potential candidates for use in such demanding environments. This study investigates the high-temperature performance of FeCoCrNiMox HEAs with varying Mo contents (x = 0, 0.1, 0.3, and 0.5) prepared by laser powder bed fusion additive manufacturing. The mechanical properties were evaluated at room and 600 °C temperatures, and the microstructures were characterized using scanning electron microscopy, electron backscatter diffraction, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The intrinsic dislocation cell patterning, solid-solution strengthening, nanoprecipitation, and twinning effects collectively modulated the plastic deformation behavior of the samples. The high-temperature mechanical performance was comprehensively analyzed in conjunction with ab initio calculations and molecular dynamics simulations to reveal the origin of the experimentally observed strength–ductility synergy of FeCoCrNiMo0.3. This study has significant implications for FeCoCrNiMox HEAs and extends our understanding of the structural origins of the exceptional mechanical properties of additively manufactured HEAs.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.