Solving discrete network design problem using disjunctive constraints

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
H. Mirzahossein, P. Najafi, N. Kalantari, T. Waller
{"title":"Solving discrete network design problem using disjunctive constraints","authors":"H. Mirzahossein, P. Najafi, N. Kalantari, T. Waller","doi":"10.1111/mice.13352","DOIUrl":null,"url":null,"abstract":"This paper introduces a deterministic algorithm to solve the discrete network design problem (DNDP) efficiently. This non‐convex bilevel optimization problem is well‐known as an non deterministic polynomial (NP)‐hard problem in strategic transportation planning. The proposed algorithm optimizes budget allocation for large‐scale network improvements deterministically and with computational efficiency. It integrates disjunctive programming with an improved partial linearized subgradient method to enhance performance without significantly affecting solution quality. We evaluated our algorithm on the mid‐scale Sioux Falls and large‐scale Chicago networks. We assess the proposed algorithm's accuracy by examining the objective function's value, specifically the total travel time within the network. When tested on the mid‐scale Sioux Falls network, the algorithm achieved an average 46% improvement in computational efficiency, compared to the best‐performing method discussed in this paper, albeit with a 4.17% higher total travel time than the most accurate one, as the value of the objective function. In the application to the large‐scale Chicago network, the efficiency improved by an average of 99.48% while the total travel time experienced a 4.34% increase. These findings indicate that the deterministic algorithm proposed in this research improves the computational speed while presenting a limited trade‐off with solution precision. This deterministic approach offers a structured, predictable, and repeatable method for solving DNDP, which can advance transportation planning, particularly for large‐scale network applications where computational efficiency is paramount.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"53 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13352","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a deterministic algorithm to solve the discrete network design problem (DNDP) efficiently. This non‐convex bilevel optimization problem is well‐known as an non deterministic polynomial (NP)‐hard problem in strategic transportation planning. The proposed algorithm optimizes budget allocation for large‐scale network improvements deterministically and with computational efficiency. It integrates disjunctive programming with an improved partial linearized subgradient method to enhance performance without significantly affecting solution quality. We evaluated our algorithm on the mid‐scale Sioux Falls and large‐scale Chicago networks. We assess the proposed algorithm's accuracy by examining the objective function's value, specifically the total travel time within the network. When tested on the mid‐scale Sioux Falls network, the algorithm achieved an average 46% improvement in computational efficiency, compared to the best‐performing method discussed in this paper, albeit with a 4.17% higher total travel time than the most accurate one, as the value of the objective function. In the application to the large‐scale Chicago network, the efficiency improved by an average of 99.48% while the total travel time experienced a 4.34% increase. These findings indicate that the deterministic algorithm proposed in this research improves the computational speed while presenting a limited trade‐off with solution precision. This deterministic approach offers a structured, predictable, and repeatable method for solving DNDP, which can advance transportation planning, particularly for large‐scale network applications where computational efficiency is paramount.
利用互不相关的约束条件解决离散网络设计问题
本文介绍了一种高效解决离散网络设计问题(DNDP)的确定性算法。这个非凸双层优化问题是众所周知的战略交通规划中的非确定性多项式(NP)困难问题。所提出的算法可确定性地优化大规模网络改进的预算分配,并具有很高的计算效率。该算法将非连续性编程与改进的部分线性化子梯度法相结合,在不明显影响解质量的情况下提高了性能。我们在中等规模的苏福尔斯和大规模的芝加哥网络上评估了我们的算法。我们通过检查目标函数的值,特别是网络内的总旅行时间,来评估所提出算法的准确性。在中等规模的苏福尔斯网络上进行测试时,与本文讨论的性能最好的方法相比,该算法的计算效率平均提高了 46%,尽管在目标函数值上,总旅行时间比最准确的方法高出 4.17%。在芝加哥大规模网络的应用中,效率平均提高了 99.48%,而总旅行时间却增加了 4.34%。这些研究结果表明,本研究提出的确定性算法在提高计算速度的同时,对解决方案的精确性进行了有限的权衡。这种确定性方法为 DNDP 的求解提供了一种结构化、可预测和可重复的方法,可以推进交通规划,特别是对于计算效率至关重要的大规模网络应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信