Rui Ni, Ting Cao, Xiaoyun Ji, Angel Peng, Zhuxu Zhang, Guo-Chang Fan, Peter Stathopulos, Subrata Chakrabarti, Zhaoliang Su, Tianqing Peng
{"title":"DNA damage-inducible transcript 3 positively regulates RIPK1-mediated necroptosis","authors":"Rui Ni, Ting Cao, Xiaoyun Ji, Angel Peng, Zhuxu Zhang, Guo-Chang Fan, Peter Stathopulos, Subrata Chakrabarti, Zhaoliang Su, Tianqing Peng","doi":"10.1038/s41418-024-01385-4","DOIUrl":null,"url":null,"abstract":"<p>DNA damage-inducible transcript 3 (DDIT3) is a well-known transcription factor that regulates the expression of apoptosis-related genes for promoting apoptosis during endoplasmic reticulum stress. Here, we report an unrecognized role of DDIT3 in facilitating necroptosis. DDIT3 directly binds and competitively prevents the p38 MAPK-MK2 interaction and thereby blocking MK2 activation while stimulating p38 MAPK activation. This blockage of MK2 activation initially prevents RIPK1 phosphorylation at Ser320 (inactivation), subsequently relieving its suppression of RIPK1 activation. Consequently, p38 MAPK facilitates RIPK1 phosphorylation at Ser166 (activation) through DDIT3 phosphorylation-related mechanisms, leading to necroptosis. Mechanistically, a 10-amino acid segment (Glu19-Val28) within DDIT3’s N-terminus is identified to account for its pro-necroptotic function. In vivo studies demonstrate that forced expression of DDIT3 induces necroptosis, whereas deletion of DDIT3 alleviates necroptosis in mouse hearts under stress. These findings shed light on a novel regulatory mechanism by which DDIT3 promotes RIPK1 activation and subsequent necroptosis.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"221 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01385-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA damage-inducible transcript 3 (DDIT3) is a well-known transcription factor that regulates the expression of apoptosis-related genes for promoting apoptosis during endoplasmic reticulum stress. Here, we report an unrecognized role of DDIT3 in facilitating necroptosis. DDIT3 directly binds and competitively prevents the p38 MAPK-MK2 interaction and thereby blocking MK2 activation while stimulating p38 MAPK activation. This blockage of MK2 activation initially prevents RIPK1 phosphorylation at Ser320 (inactivation), subsequently relieving its suppression of RIPK1 activation. Consequently, p38 MAPK facilitates RIPK1 phosphorylation at Ser166 (activation) through DDIT3 phosphorylation-related mechanisms, leading to necroptosis. Mechanistically, a 10-amino acid segment (Glu19-Val28) within DDIT3’s N-terminus is identified to account for its pro-necroptotic function. In vivo studies demonstrate that forced expression of DDIT3 induces necroptosis, whereas deletion of DDIT3 alleviates necroptosis in mouse hearts under stress. These findings shed light on a novel regulatory mechanism by which DDIT3 promotes RIPK1 activation and subsequent necroptosis.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.