Quantum Circuit for Imputation of Missing Data

Claudio Sanavio;Simone Tibaldi;Edoardo Tignone;Elisa Ercolessi
{"title":"Quantum Circuit for Imputation of Missing Data","authors":"Claudio Sanavio;Simone Tibaldi;Edoardo Tignone;Elisa Ercolessi","doi":"10.1109/TQE.2024.3447875","DOIUrl":null,"url":null,"abstract":"The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity \n<inline-formula><tex-math>$\\mathcal {O}(N)$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$\\mathcal {O}(N^{2})$</tex-math></inline-formula>\n that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643709","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10643709/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity $\mathcal {O}(N)$ and $\mathcal {O}(N^{2})$ that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data.
计算缺失数据的量子电路
缺失数据的估算是数据分析中的一种常见程序,包括预测不完整数据点的缺失值。在这项工作中,我们分析了一种用于缺失数据估算的变分量子电路。我们构建了门复杂度为 $\mathcal {O}(N)$ 和 $\mathcal {O}(N^{2})$ 的变分量子电路,可以返回特定分布的二进制字符串的最后一个缺失位。我们在一系列数据集上对算法的性能进行了训练和测试,发现结果收敛性良好。最后,我们测试了电路对未见数据的通用性。对于简单的系统,我们可以对电路进行分析描述,从而跳过通过重复测量来训练电路这一繁琐且尚未解决的问题。我们事先找到了参数的最佳值,并利用它们构建了适合生成真正随机数据的最佳电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信