{"title":"Graph Contrastive Learning for Tracking Dynamic Communities in Temporal Networks","authors":"Yun Ai;Xianghua Xie;Xiaoke Ma","doi":"10.1109/TETCI.2024.3386844","DOIUrl":null,"url":null,"abstract":"Temporal networks are ubiquitous because complex systems in nature and society are evolving, and tracking dynamic communities is critical for revealing the mechanism of systems. Moreover, current algorithms utilize temporal smoothness framework to balance clustering accuracy at current time and clustering drift at historical time, which are criticized for failing to characterize the temporality of networks and determine its importance. To overcome these problems, we propose a novel algorithm by \n<underline><b>j</b></u>\noining \n<underline><b>N</b></u>\non-negative matrix factorization and \n<underline><b>C</b></u>\nontrastive learning for \n<underline><b>D</b></u>\nynamic \n<underline><b>C</b></u>\nommunity detection (jNCDC). Specifically, jNCDC learns the features of vertices by projecting successive snapshots into a shared subspace to learn the low-dimensional representation of vertices with matrix factorization. Subsequently, it constructs an evolution graph to explicitly measure relations of vertices by representing vertices at current time with features at historical time, paving a way to characterize the dynamics of networks at the vertex-level. Finally, graph contrastive learning utilizes the roles of vertices to select positive and negative samples to further improve the quality of features. These procedures are seamlessly integrated into an overall objective function, and optimization rules are deduced. To the best of our knowledge, jNCDC is the first graph contrastive learning for dynamic community detection, that provides an alternative for the current temporal smoothness framework. Experimental results demonstrate that jNCDC is superior to the state-of-the-art approaches in terms of accuracy.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3422-3435"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10502242/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal networks are ubiquitous because complex systems in nature and society are evolving, and tracking dynamic communities is critical for revealing the mechanism of systems. Moreover, current algorithms utilize temporal smoothness framework to balance clustering accuracy at current time and clustering drift at historical time, which are criticized for failing to characterize the temporality of networks and determine its importance. To overcome these problems, we propose a novel algorithm by
j
oining
N
on-negative matrix factorization and
C
ontrastive learning for
D
ynamic
C
ommunity detection (jNCDC). Specifically, jNCDC learns the features of vertices by projecting successive snapshots into a shared subspace to learn the low-dimensional representation of vertices with matrix factorization. Subsequently, it constructs an evolution graph to explicitly measure relations of vertices by representing vertices at current time with features at historical time, paving a way to characterize the dynamics of networks at the vertex-level. Finally, graph contrastive learning utilizes the roles of vertices to select positive and negative samples to further improve the quality of features. These procedures are seamlessly integrated into an overall objective function, and optimization rules are deduced. To the best of our knowledge, jNCDC is the first graph contrastive learning for dynamic community detection, that provides an alternative for the current temporal smoothness framework. Experimental results demonstrate that jNCDC is superior to the state-of-the-art approaches in terms of accuracy.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.