Keke Tang;Tianrui Lou;Weilong Peng;Nenglun Chen;Yawen Shi;Wenping Wang
{"title":"Effective Single-Step Adversarial Training With Energy-Based Models","authors":"Keke Tang;Tianrui Lou;Weilong Peng;Nenglun Chen;Yawen Shi;Wenping Wang","doi":"10.1109/TETCI.2024.3378652","DOIUrl":null,"url":null,"abstract":"Adversarial training (AT) is one of the most effective ways against adversarial attacks. However, multi-step AT is time-consuming while single-step AT is ineffective. In this paper, we propose an Energy-AT framework to make single-step AT as effective as multi-step ones, by exploiting the two properties of energy-based models (EBM). First, we utilize the Helmholtz free energy in EBM to push generated examples to be outside of the distribution boundaries of their categories, such that they are more adversarial. Second, we apply an adaptive temperature scheme in EBM to amplify the training gradients of weak adversarial examples targetedly, such that those originally hard-to-learn examples contribute to the robustification of models also. Extensive experiments validate that Energy-AT improves the robustness of models significantly to adversarial attacks in both white-box and black-box settings, and outperforms the state-of-the-art methods.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3396-3407"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10485467/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Adversarial training (AT) is one of the most effective ways against adversarial attacks. However, multi-step AT is time-consuming while single-step AT is ineffective. In this paper, we propose an Energy-AT framework to make single-step AT as effective as multi-step ones, by exploiting the two properties of energy-based models (EBM). First, we utilize the Helmholtz free energy in EBM to push generated examples to be outside of the distribution boundaries of their categories, such that they are more adversarial. Second, we apply an adaptive temperature scheme in EBM to amplify the training gradients of weak adversarial examples targetedly, such that those originally hard-to-learn examples contribute to the robustification of models also. Extensive experiments validate that Energy-AT improves the robustness of models significantly to adversarial attacks in both white-box and black-box settings, and outperforms the state-of-the-art methods.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.