{"title":"Guest Editorial Special Issue on Resource Sustainable Computational and Artificial Intelligence","authors":"Joey Tianyi Zhou;Ivor W. Tsang;Yew Soon Ong","doi":"10.1109/TETCI.2024.3463048","DOIUrl":null,"url":null,"abstract":"In Recent years, the rapid advancements in computational and artificial intelligence (C/AI) have led to successful applications across various disciplines, driven by neural networks and powerful computing hardware. However, these achievements come with a significant challenge: the resource-intensive nature of current AI systems, particularly deep learning models, results in substantial energy consumption and carbon emissions throughout their lifecycle. This resource demand underscores the urgent need to develop resource-constrained AI and computational intelligence methods. Sustainable C/AI approaches are crucial not only to mitigate the environmental impact of AI systems but also to enhance their role as tools for promoting sustainability in industries like reliability engineering, material design, and manufacturing.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3196-3198"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703865","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10703865/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In Recent years, the rapid advancements in computational and artificial intelligence (C/AI) have led to successful applications across various disciplines, driven by neural networks and powerful computing hardware. However, these achievements come with a significant challenge: the resource-intensive nature of current AI systems, particularly deep learning models, results in substantial energy consumption and carbon emissions throughout their lifecycle. This resource demand underscores the urgent need to develop resource-constrained AI and computational intelligence methods. Sustainable C/AI approaches are crucial not only to mitigate the environmental impact of AI systems but also to enhance their role as tools for promoting sustainability in industries like reliability engineering, material design, and manufacturing.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.