Mezmur D Belew, Emilie Chien, Matthew Wong, W Matthew Michael
{"title":"The TOP-2/condensin II axis silences transcription during germline specification in C. elegans.","authors":"Mezmur D Belew, Emilie Chien, Matthew Wong, W Matthew Michael","doi":"10.1093/g3journal/jkae236","DOIUrl":null,"url":null,"abstract":"<p><p>In C. elegans, the germline is specified via a preformation mechanism that relies on the PIE-1 protein's ability to globally silence mRNA transcription in germline precursor cells, also known as the P lineage. Recent work from our group has identified additional genome silencing events in C. elegans during oogenesis and in starved L1 larvae, and these require the condensin II complex, topoisomerase II (TOP-2), and components of the H3K9me/heterochromatin pathway. Interestingly, silencing in oocytes also requires PIE-1, but this is not the case in starved L1s. Here, we ask if additional genome silencing components besides PIE-1 are required to repress gene expression in the P lineage of early embryos, and we find that condensin II and TOP-2 are required and the H3K9me/heterochromatin pathway is not. We show that depletion of TOP-2/condensin II activates the normally suppressed RNA polymerase II to inappropriately transcribe somatic genes in the P lineage. We also present evidence that while both PIE-1 and TOP-2/condensin II are required for genome silencing in the P lineage, PIE-1 can silence transcription independently of TOP-2/condensin II when misexpressed in somatic cells. Thus, in oocytes, all three genome silencing systems (TOP-2/condensin II, H3K9me, and PIE-1) are operational while in both early embryos and starved L1s two of the three are active. Our data show that multiple, redundantly acting genome silencing mechanisms act in a mix and match manner to repress transcription at different developmental stages in the C. elegans germline.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae236","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
In C. elegans, the germline is specified via a preformation mechanism that relies on the PIE-1 protein's ability to globally silence mRNA transcription in germline precursor cells, also known as the P lineage. Recent work from our group has identified additional genome silencing events in C. elegans during oogenesis and in starved L1 larvae, and these require the condensin II complex, topoisomerase II (TOP-2), and components of the H3K9me/heterochromatin pathway. Interestingly, silencing in oocytes also requires PIE-1, but this is not the case in starved L1s. Here, we ask if additional genome silencing components besides PIE-1 are required to repress gene expression in the P lineage of early embryos, and we find that condensin II and TOP-2 are required and the H3K9me/heterochromatin pathway is not. We show that depletion of TOP-2/condensin II activates the normally suppressed RNA polymerase II to inappropriately transcribe somatic genes in the P lineage. We also present evidence that while both PIE-1 and TOP-2/condensin II are required for genome silencing in the P lineage, PIE-1 can silence transcription independently of TOP-2/condensin II when misexpressed in somatic cells. Thus, in oocytes, all three genome silencing systems (TOP-2/condensin II, H3K9me, and PIE-1) are operational while in both early embryos and starved L1s two of the three are active. Our data show that multiple, redundantly acting genome silencing mechanisms act in a mix and match manner to repress transcription at different developmental stages in the C. elegans germline.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.