Macroscale vertical power-law distribution of bacteria in dark oceans can emerge from microscale bacteria-particle interactions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Takeshi Miki , Po-Ju Ke
{"title":"Macroscale vertical power-law distribution of bacteria in dark oceans can emerge from microscale bacteria-particle interactions","authors":"Takeshi Miki ,&nbsp;Po-Ju Ke","doi":"10.1016/j.jtbi.2024.111956","DOIUrl":null,"url":null,"abstract":"<div><div>Microbes in the dark oceans are a key determinant of remineralization of sinking carbon particles. However, most marine ecosystem models overlook how microbes aggregate on particles and the microscale interactions between particle-associated microbes, making it difficult to obtain mechanistic insights on their vertical power-law decay pattern. Here, we present a spatial population model where the attachment and detachment processes of bacterial cells depend on local density of particle-associated bacteria. We show that the power-law relationship can emerge when the non-random aggregated distribution of bacteria is considered without any depth-specific environmental parameters. Furthermore, the comparison between model behavior and empirical patterns in the Pacific and Southern Ocean indicated that temperature-dependent hydrolysis rate and nutrient-dependent sinking rate of particles are key parameters to explain the regional variations of the power-law exponent. The mechanistic approach developed here provides a pathway to link micro-scale interactions between individuals to macro-scale food chain structures and carbon cycle.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002418","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbes in the dark oceans are a key determinant of remineralization of sinking carbon particles. However, most marine ecosystem models overlook how microbes aggregate on particles and the microscale interactions between particle-associated microbes, making it difficult to obtain mechanistic insights on their vertical power-law decay pattern. Here, we present a spatial population model where the attachment and detachment processes of bacterial cells depend on local density of particle-associated bacteria. We show that the power-law relationship can emerge when the non-random aggregated distribution of bacteria is considered without any depth-specific environmental parameters. Furthermore, the comparison between model behavior and empirical patterns in the Pacific and Southern Ocean indicated that temperature-dependent hydrolysis rate and nutrient-dependent sinking rate of particles are key parameters to explain the regional variations of the power-law exponent. The mechanistic approach developed here provides a pathway to link micro-scale interactions between individuals to macro-scale food chain structures and carbon cycle.
暗色海洋中细菌的宏观垂直幂律分布可以从微观的细菌-粒子相互作用中产生。
暗色海洋中的微生物是决定下沉碳颗粒再矿化的关键因素。然而,大多数海洋生态系统模型都忽略了微生物如何聚集在颗粒上以及颗粒相关微生物之间的微观相互作用,因此很难从机理上了解它们的垂直幂律衰减模式。在这里,我们提出了一个空间种群模型,其中细菌细胞的附着和脱离过程取决于颗粒相关细菌的局部密度。我们的研究表明,当考虑细菌的非随机聚集分布而不考虑任何特定深度的环境参数时,幂律关系就会出现。此外,模型行为与太平洋和南大洋经验模式的比较表明,与温度相关的水解速率和与营养物质相关的颗粒沉降速率是解释幂律指数区域变化的关键参数。本文提出的机理方法为将个体间微观尺度的相互作用与宏观尺度的食物链结构和碳循环联系起来提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信