{"title":"Simultaneous analysis of caffeine and paraxanthine provides potentially useful indexes in the treatment of acute caffeine intoxication.","authors":"Yoshitaka Yamazaki, Asuka Kaizaki-Mitsumoto, Mariko Sato, Yumiko Inoue, Kazuyuki Miyamoto, Keisuke Suzuki, Munetaka Hayashi, Kenji Dohi, Satoshi Numazawa","doi":"10.2131/jts.49.447","DOIUrl":null,"url":null,"abstract":"<p><p>Caffeine (CFF) is efficiently absorbed after ingestion, and approximately 80% of ingested CFF is metabolized to paraxanthine (PXT). Although PXT has approximately twice the adenosine receptor antagonist activity of CFF, there are few reports measuring the metabolite concentrations during CFF intoxication. Furthermore, no studies have examined the efficacy of hemodialysis (HD) on PXT or the indicators that contribute to treatment strategies for patients with acute CFF intoxication. This study analyzed the association between CFF and PXT blood levels, the blood biochemical data, and the vital signs of 27 cases with information on CFF intake and elapsed time data. It was found that HD was not as effective as CFF against PXT in CFF intoxication; however, HD was effective in cases with relatively high PXT concentrations (>10 μg/mL). Simultaneous analysis of CFF and PXT would make it possible to estimate the time elapsed from CFF intake and the risk of hyperCKemia, which may develop in cases left untreated for a prolonged period after ingestion. Therefore, the measurement of PXT, in addition to CFF, is expected to provide useful information for understanding the pathogenesis of CFF intoxication and the development of treatment strategies of acute CFF intoxication.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"49 10","pages":"447-457"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.49.447","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Caffeine (CFF) is efficiently absorbed after ingestion, and approximately 80% of ingested CFF is metabolized to paraxanthine (PXT). Although PXT has approximately twice the adenosine receptor antagonist activity of CFF, there are few reports measuring the metabolite concentrations during CFF intoxication. Furthermore, no studies have examined the efficacy of hemodialysis (HD) on PXT or the indicators that contribute to treatment strategies for patients with acute CFF intoxication. This study analyzed the association between CFF and PXT blood levels, the blood biochemical data, and the vital signs of 27 cases with information on CFF intake and elapsed time data. It was found that HD was not as effective as CFF against PXT in CFF intoxication; however, HD was effective in cases with relatively high PXT concentrations (>10 μg/mL). Simultaneous analysis of CFF and PXT would make it possible to estimate the time elapsed from CFF intake and the risk of hyperCKemia, which may develop in cases left untreated for a prolonged period after ingestion. Therefore, the measurement of PXT, in addition to CFF, is expected to provide useful information for understanding the pathogenesis of CFF intoxication and the development of treatment strategies of acute CFF intoxication.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.