Ayesha Sultan, Deshea L Harris, Peter Lam, Julie Whitcomb, Pedram Hamrah
{"title":"The Optejet Technology Minimizes Preservative-Mediated Cytotoxicity of Conjunctival Epithelial Cells Treated with Latanoprost <i>In Vitro</i>.","authors":"Ayesha Sultan, Deshea L Harris, Peter Lam, Julie Whitcomb, Pedram Hamrah","doi":"10.1089/jop.2024.0085","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Purpose:</i></b> Benzalkonium chloride (BAK) is a commonly used preservative to maintain sterility for multiuse eye drops such as latanoprost. One option to minimize the deleterious effects of BAK in eye drops may be to reduce the volume administered. The aim of this study was to assess the response of cells from the ocular surface to latanoprost+BAK administered by the Optejet technology, which dispenses a microdose (∼8 µL) ophthalmical spray. <b><i>Methods:</i></b> Cultured human conjunctival epithelial cells were exposed to the following treatments: (1) no treatment, (2) drop form of latanoprost without BAK (∼35 µL), (3) drop form of latanoprost with 0.01% BAK (∼35 µL), (4) ophthalmical spray form of latanoprost with 0.01% BAK delivered by the Optejet technology (∼8 µL). After 5 h, cells were assessed for changes in cytotoxicity, morphology, and inflammatory marker expression. <b><i>Results:</i></b> Latanoprost+BAK delivered by a drop induced cytotoxicity, cytoplasmic shrinkage, and loss of cell-cell contact, and expression of chemokine (C-C motif) ligand 2 and interleukin-6. In contrast, latanoprost+BAK delivered by the Optejet technology was both well tolerated and similar to no treatment controls and BAK-free latanoprost treatment. <b><i>Conclusions:</i></b> A microdose of latanoprost+BAK ophthalmical spray administered with the Optejet technology prevented the cytotoxicity associated with larger volumes found in eye drops. Precision dosing by the Optejet technology has the potential to decrease ocular surface disorder typically associated with eye drops containing preservatives.</p>","PeriodicalId":16689,"journal":{"name":"Journal of Ocular Pharmacology and Therapeutics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocular Pharmacology and Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jop.2024.0085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Benzalkonium chloride (BAK) is a commonly used preservative to maintain sterility for multiuse eye drops such as latanoprost. One option to minimize the deleterious effects of BAK in eye drops may be to reduce the volume administered. The aim of this study was to assess the response of cells from the ocular surface to latanoprost+BAK administered by the Optejet technology, which dispenses a microdose (∼8 µL) ophthalmical spray. Methods: Cultured human conjunctival epithelial cells were exposed to the following treatments: (1) no treatment, (2) drop form of latanoprost without BAK (∼35 µL), (3) drop form of latanoprost with 0.01% BAK (∼35 µL), (4) ophthalmical spray form of latanoprost with 0.01% BAK delivered by the Optejet technology (∼8 µL). After 5 h, cells were assessed for changes in cytotoxicity, morphology, and inflammatory marker expression. Results: Latanoprost+BAK delivered by a drop induced cytotoxicity, cytoplasmic shrinkage, and loss of cell-cell contact, and expression of chemokine (C-C motif) ligand 2 and interleukin-6. In contrast, latanoprost+BAK delivered by the Optejet technology was both well tolerated and similar to no treatment controls and BAK-free latanoprost treatment. Conclusions: A microdose of latanoprost+BAK ophthalmical spray administered with the Optejet technology prevented the cytotoxicity associated with larger volumes found in eye drops. Precision dosing by the Optejet technology has the potential to decrease ocular surface disorder typically associated with eye drops containing preservatives.
期刊介绍:
Journal of Ocular Pharmacology and Therapeutics is the only peer-reviewed journal that combines the fields of ophthalmology and pharmacology to enable optimal treatment and prevention of ocular diseases and disorders. The Journal delivers the latest discoveries in the pharmacokinetics and pharmacodynamics of therapeutics for the treatment of ophthalmic disorders.
Journal of Ocular Pharmacology and Therapeutics coverage includes:
Glaucoma
Cataracts
Retinal degeneration
Ocular infection, trauma, and toxicology
Ocular drug delivery and biotransformation
Ocular pharmacotherapy/clinical trials
Ocular inflammatory and immune disorders
Gene and cell-based therapies
Ocular metabolic disorders
Ocular ischemia and blood flow
Proliferative disorders of the eye
Eyes on Drug Discovery - written by Gary D. Novack, PhD, featuring the latest updates on drug and device pipeline developments as well as policy/regulatory changes by the FDA.