Stefano Casarin , Nele A. Haelterman , Keren Machol
{"title":"Transforming personalized chronic pain management with artificial intelligence: A commentary on the current landscape and future directions","authors":"Stefano Casarin , Nele A. Haelterman , Keren Machol","doi":"10.1016/j.expneurol.2024.114980","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) has the potential to revolutionize chronic pain management by guiding the development of effective treatment strategies that are tailored to individual patient needs. This potential comes from AI's ability to analyze large and heterogeneous datasets to identify hidden patterns. When applied to clinical datasets of a particular patient population, AI can be used to identify pain subtypes among patients, predict treatment responses, and guide the clinical decision-making process. However, integrating AI into the clinical practice requires overcoming challenges such as data quality, the complexity of human pain physiology, and validation against diverse patient populations. Targeted, collaborative efforts among clinicians, researchers, and AI specialists will be needed to maximize AI's capabilities and advance current management and treatment of chronic pain conditions.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624003066","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) has the potential to revolutionize chronic pain management by guiding the development of effective treatment strategies that are tailored to individual patient needs. This potential comes from AI's ability to analyze large and heterogeneous datasets to identify hidden patterns. When applied to clinical datasets of a particular patient population, AI can be used to identify pain subtypes among patients, predict treatment responses, and guide the clinical decision-making process. However, integrating AI into the clinical practice requires overcoming challenges such as data quality, the complexity of human pain physiology, and validation against diverse patient populations. Targeted, collaborative efforts among clinicians, researchers, and AI specialists will be needed to maximize AI's capabilities and advance current management and treatment of chronic pain conditions.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.