Tian-Xu Gao , Yu Liang , Jian Li , Dan Zhao , Bai-Jun Dong , Chen Xu , Wei-Dong Zhao , Xia Li , Chuan-Sheng Zhao
{"title":"Knockout of neutrophil cytosolic factor 1 ameliorates neuroinflammation and motor deficit after traumatic brain injury","authors":"Tian-Xu Gao , Yu Liang , Jian Li , Dan Zhao , Bai-Jun Dong , Chen Xu , Wei-Dong Zhao , Xia Li , Chuan-Sheng Zhao","doi":"10.1016/j.expneurol.2024.114983","DOIUrl":null,"url":null,"abstract":"<div><div>Traumatic brain injury (TBI) is a predominant cause of long-term disability in adults, yet the molecular mechanisms underpinning the neuropathological processes associated with it remain inadequately understood. Neutrophil cytosolic factor 1 (NCF1, also known as p47<sup>phox</sup>) is one of the cytosolic components of NADPH oxidase NOX2. In this study, we observed a reduction in the volume of TBI-induced brain lesions in NCF1-knockout mice compared to controls. Correspondingly, the neuronal loss induced by TBI was mitigated in the NCF1-knockout mice. Behavioral analysis also demonstrated that the motor coordination deficit following TBI was mitigated by the depletion of NCF1. Mechanistically, our findings revealed that NCF1 deficiency attenuated TBI-induced inflammatory responses by inhibiting the release of proinflammatory factors and reducing neutrophil infiltration into the brain parenchyma. Additionally, our results indicated that NCF1 deficiency significantly decreased the levels of reactive oxygen species in neutrophils. Taken together, our findings indicate that NCF1 plays a crucial role in the regulation of brain injury and secondary inflammation post-TBI.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624003091","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic brain injury (TBI) is a predominant cause of long-term disability in adults, yet the molecular mechanisms underpinning the neuropathological processes associated with it remain inadequately understood. Neutrophil cytosolic factor 1 (NCF1, also known as p47phox) is one of the cytosolic components of NADPH oxidase NOX2. In this study, we observed a reduction in the volume of TBI-induced brain lesions in NCF1-knockout mice compared to controls. Correspondingly, the neuronal loss induced by TBI was mitigated in the NCF1-knockout mice. Behavioral analysis also demonstrated that the motor coordination deficit following TBI was mitigated by the depletion of NCF1. Mechanistically, our findings revealed that NCF1 deficiency attenuated TBI-induced inflammatory responses by inhibiting the release of proinflammatory factors and reducing neutrophil infiltration into the brain parenchyma. Additionally, our results indicated that NCF1 deficiency significantly decreased the levels of reactive oxygen species in neutrophils. Taken together, our findings indicate that NCF1 plays a crucial role in the regulation of brain injury and secondary inflammation post-TBI.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.