CXCR3-CXCL11 Signaling Restricts Angiogenesis and Promotes Pericyte Recruitment.

IF 7.4 1区 医学 Q1 HEMATOLOGY
Jihui Lee, Megan E Goeckel, Allison Levitas, Sarah Colijn, Jimann Shin, Anna Hindes, Geonyoung Mun, Zarek Burton, Bharadwaj Chintalapati, Ying Yin, Javier Abello, Lilianna Solnica-Krezel, Amber Stratman
{"title":"CXCR3-CXCL11 Signaling Restricts Angiogenesis and Promotes Pericyte Recruitment.","authors":"Jihui Lee, Megan E Goeckel, Allison Levitas, Sarah Colijn, Jimann Shin, Anna Hindes, Geonyoung Mun, Zarek Burton, Bharadwaj Chintalapati, Ying Yin, Javier Abello, Lilianna Solnica-Krezel, Amber Stratman","doi":"10.1161/ATVBAHA.124.321434","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces; yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor CXCR3 (CXC motif chemokine receptor 3) and one of its ligands, CXCL11 (CXC motif chemokine ligand 11)-that delimits EC angiogenic potential and promotes pericyte recruitment to ECs during development.</p><p><strong>Methods: </strong>We investigated the role of CXCR3 on vascular development using both 2- and 3-dimensional in vitro assays, to study EC-pericyte interactions and EC behavioral responses to blood flow. Additionally, genetic mutants and pharmacological modulators were used in zebra fish in vivo to study the impacts of CXCR3 loss and gain of function on vascular development.</p><p><strong>Results: </strong>In vitro modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes. In vivo, phenotypic defects are particularly noted in the cranial vasculature, where we see a loss of pericyte association with ECs and expansion of the vasculature in zebra fish treated with the Cxcr3 inhibitor AMG487 or in homozygous <i>cxcr3.1/3.2/3.3</i> triple mutants. We also demonstrate that CXCR3-deficient ECs are more elongated, move more slowly, and have impaired EC-EC junctions compared with their control counterparts.</p><p><strong>Conclusions: </strong>Our results suggest that CXCR3 signaling in ECs helps promote vascular stabilization events during development by preventing EC overgrowth and promoting pericyte recruitment.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.124.321434","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces; yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor CXCR3 (CXC motif chemokine receptor 3) and one of its ligands, CXCL11 (CXC motif chemokine ligand 11)-that delimits EC angiogenic potential and promotes pericyte recruitment to ECs during development.

Methods: We investigated the role of CXCR3 on vascular development using both 2- and 3-dimensional in vitro assays, to study EC-pericyte interactions and EC behavioral responses to blood flow. Additionally, genetic mutants and pharmacological modulators were used in zebra fish in vivo to study the impacts of CXCR3 loss and gain of function on vascular development.

Results: In vitro modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes. In vivo, phenotypic defects are particularly noted in the cranial vasculature, where we see a loss of pericyte association with ECs and expansion of the vasculature in zebra fish treated with the Cxcr3 inhibitor AMG487 or in homozygous cxcr3.1/3.2/3.3 triple mutants. We also demonstrate that CXCR3-deficient ECs are more elongated, move more slowly, and have impaired EC-EC junctions compared with their control counterparts.

Conclusions: Our results suggest that CXCR3 signaling in ECs helps promote vascular stabilization events during development by preventing EC overgrowth and promoting pericyte recruitment.

CXCR3-CXCL11信号传导限制血管生成并促进周细胞募集
背景:众所周知,内皮细胞(EC)与包膜之间的相互作用会随着血流动力学力量的变化而重塑;然而,人们对这些事件背后的信号通路缺乏机理上的了解。在这里,我们发现了一个受EC中血流调控的新型信号网络--趋化因子受体CXCR3(CXC motif chemokine receptor 3)及其配体之一CXCL11(CXC motif chemokine ligand 11)--它在发育过程中限定了EC的血管生成潜能并促进EC的周细胞募集:我们利用二维和三维体外试验研究了CXCR3在血管发育过程中的作用,研究了心肌细胞与周细胞之间的相互作用以及心肌细胞对血流的行为反应。此外,还在斑马鱼体内使用遗传突变体和药物调节剂来研究 CXCR3 功能缺失和增益对血管发育的影响:结果:心血管细胞与周细胞相互作用的体外模型显示,抑制心血管细胞特异性CXCR3信号导致周细胞与心血管细胞管失去联系。在体内,表型缺陷尤其体现在颅骨血管中,我们发现斑马鱼在使用Cxcr3抑制剂AMG487或同源cxcr3.1/3.2/3.3三重突变体后,周细胞与EC的结合丧失,血管扩张。我们还证明,与对照组相比,CXCR3缺陷的EC更加细长,移动速度更慢,EC-EC连接受损:我们的研究结果表明,EC 中的 CXCR3 信号通过防止 EC 过度生长和促进周细胞募集,有助于促进发育过程中的血管稳定事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.60
自引率
2.30%
发文量
337
审稿时长
2-4 weeks
期刊介绍: The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA). The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信