Robust and automatic beamstop shadow outlier rejection: combining crystallographic statistics with modern clustering under a semi-supervised learning strategy.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yunyun Gao, Helen M Ginn, Andrea Thorn
{"title":"Robust and automatic beamstop shadow outlier rejection: combining crystallographic statistics with modern clustering under a semi-supervised learning strategy.","authors":"Yunyun Gao, Helen M Ginn, Andrea Thorn","doi":"10.1107/S2059798324008519","DOIUrl":null,"url":null,"abstract":"<p><p>During the automatic processing of crystallographic diffraction experiments, beamstop shadows are often unaccounted for or only partially masked. As a result of this, outlier reflection intensities are integrated, which is a known issue. Traditional statistical diagnostics have only limited effectiveness in identifying these outliers, here termed Not-Excluded-unMasked-Outliers (NEMOs). The diagnostic tool AUSPEX allows visual inspection of NEMOs, where they form a typical pattern: clusters at the low-resolution end of the AUSPEX plots of intensities or amplitudes versus resolution. To automate NEMO detection, a new algorithm was developed by combining data statistics with a density-based clustering method. This approach demonstrates a promising performance in detecting NEMOs in merged data sets without disrupting existing data-reduction pipelines. Re-refinement results indicate that excluding the identified NEMOs can effectively enhance the quality of subsequent structure-determination steps. This method offers a prospective automated means to assess the efficacy of a beamstop mask, as well as highlighting the potential of modern pattern-recognition techniques for automating outlier exclusion during data processing, facilitating future adaptation to evolving experimental strategies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798324008519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

During the automatic processing of crystallographic diffraction experiments, beamstop shadows are often unaccounted for or only partially masked. As a result of this, outlier reflection intensities are integrated, which is a known issue. Traditional statistical diagnostics have only limited effectiveness in identifying these outliers, here termed Not-Excluded-unMasked-Outliers (NEMOs). The diagnostic tool AUSPEX allows visual inspection of NEMOs, where they form a typical pattern: clusters at the low-resolution end of the AUSPEX plots of intensities or amplitudes versus resolution. To automate NEMO detection, a new algorithm was developed by combining data statistics with a density-based clustering method. This approach demonstrates a promising performance in detecting NEMOs in merged data sets without disrupting existing data-reduction pipelines. Re-refinement results indicate that excluding the identified NEMOs can effectively enhance the quality of subsequent structure-determination steps. This method offers a prospective automated means to assess the efficacy of a beamstop mask, as well as highlighting the potential of modern pattern-recognition techniques for automating outlier exclusion during data processing, facilitating future adaptation to evolving experimental strategies.

稳健而自动的光束止影异常点剔除:在半监督学习策略下将晶体学统计与现代聚类相结合。
在晶体学衍射实验的自动处理过程中,光束止点的阴影经常被忽略或仅被部分遮挡。因此,异常反射强度会被整合进来,这是一个已知的问题。传统的统计诊断方法在识别这些异常值(这里称为未排除-未掩蔽-异常值(NEMOs))方面效果有限。诊断工具 AUSPEX 可以对 NEMOs 进行目视检查,NEMOs 在这里形成一种典型模式:在 AUSPEX 强度或振幅与分辨率关系图的低分辨率端形成群集。为了自动检测 NEMO,我们开发了一种新算法,将数据统计与基于密度的聚类方法相结合。这种方法在检测合并数据集中的 NEMO 方面表现出良好的性能,而且不会破坏现有的数据还原管道。再提纯结果表明,排除已识别的 NEMO 可有效提高后续结构确定步骤的质量。该方法提供了一种评估光束阻挡掩膜有效性的前瞻性自动化手段,同时也突出了现代模式识别技术在数据处理过程中自动排除离群点的潜力,便于未来适应不断发展的实验策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信