Design and Implementation of a Desorption Electro-flow Focusing Sprayer on an Orbitrap Mass Spectrometer for DESI Mass Spectrometry Imaging at High Spatial Resolution and at High Speed.
Carl Frederik Marc Hansen, Lukas Dobrovolskis, Christian Janfelt
{"title":"Design and Implementation of a Desorption Electro-flow Focusing Sprayer on an Orbitrap Mass Spectrometer for DESI Mass Spectrometry Imaging at High Spatial Resolution and at High Speed.","authors":"Carl Frederik Marc Hansen, Lukas Dobrovolskis, Christian Janfelt","doi":"10.1021/jasms.4c00341","DOIUrl":null,"url":null,"abstract":"<p><p>Since desorption electrospray ionization mass spectrometry (DESI-MS) was first presented in 2004, the fundamental design of the sprayer has undergone relatively minor modifications. This changed in 2022 when Takats and co-workers implemented the desorption electro-flow focusing (DEFFI) sprayer design by modifying the sprayer from a commercial DESI system, leading to significantly improved spatial resolution and robustness compared with the traditional DESI-MSI sprayer design. Here, we present the design of a new DEFFI sprayer that can be built from standard fittings and connectors in combination with an aluminum spray head that can be machined in most mechanic workshops. The new design represents a cost-efficient approach to improved DESI-MSI on mass spectrometers from all vendors, including high-resolution instruments such as Orbitraps and FT-ICR. The new DEFFI sprayer is demonstrated on a QExactive Orbitrap mass spectrometer, resulting in a massively improved ion yield compared with the classic DESI sprayer. The improved ion yield enables DESI-MSI at ion injection times down to 5 ms, allowing for DESI-MSI at a potentially very high speed. More importantly, the DEFFI sprayer delivers a more robust and focused spray, which is easier to use and requires less optimization. It provides high spatial resolution with limited effort compared with previous modifications of the traditional DESI design. Imaging of rat testis was performed at pixel sizes down to 12 μm, suggesting a spatial resolution of approximately 30 μm, which may have potential for further improvement.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00341","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Since desorption electrospray ionization mass spectrometry (DESI-MS) was first presented in 2004, the fundamental design of the sprayer has undergone relatively minor modifications. This changed in 2022 when Takats and co-workers implemented the desorption electro-flow focusing (DEFFI) sprayer design by modifying the sprayer from a commercial DESI system, leading to significantly improved spatial resolution and robustness compared with the traditional DESI-MSI sprayer design. Here, we present the design of a new DEFFI sprayer that can be built from standard fittings and connectors in combination with an aluminum spray head that can be machined in most mechanic workshops. The new design represents a cost-efficient approach to improved DESI-MSI on mass spectrometers from all vendors, including high-resolution instruments such as Orbitraps and FT-ICR. The new DEFFI sprayer is demonstrated on a QExactive Orbitrap mass spectrometer, resulting in a massively improved ion yield compared with the classic DESI sprayer. The improved ion yield enables DESI-MSI at ion injection times down to 5 ms, allowing for DESI-MSI at a potentially very high speed. More importantly, the DEFFI sprayer delivers a more robust and focused spray, which is easier to use and requires less optimization. It provides high spatial resolution with limited effort compared with previous modifications of the traditional DESI design. Imaging of rat testis was performed at pixel sizes down to 12 μm, suggesting a spatial resolution of approximately 30 μm, which may have potential for further improvement.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives