Exploring the potential of selenium nanoparticles and fabricated selenium nanoparticles @vitamin C nanocomposite in mitigating nicotine-induced testicular toxicity in rats.
Rabab F Hindawy, Rana M M Refaat, Atef E Fouda, Mohamed A El-Shishtawy, Adarsh Kumar, Nagi M El-Shafai, Eman M Faruk, Ola E Nafea
{"title":"Exploring the potential of selenium nanoparticles and fabricated selenium nanoparticles @vitamin C nanocomposite in mitigating nicotine-induced testicular toxicity in rats.","authors":"Rabab F Hindawy, Rana M M Refaat, Atef E Fouda, Mohamed A El-Shishtawy, Adarsh Kumar, Nagi M El-Shafai, Eman M Faruk, Ola E Nafea","doi":"10.1093/toxres/tfae154","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The tobacco epidemic signifies a major public health threat. Nicotine (NIC), a major active constituent in tobacco, impedes male fertility and semen quality. This work is implemented to explore the potential of selenium nanoparticles (SeNPs) and the newly fabricated SeNPs @vitamin C (SeNPs@VITC) nanocomposite in mitigating testicular toxicity induced by NIC.</p><p><strong>Materials and methods: </strong>The six groups of 48 adult Wistar rats were designed as follows: the control group injected intraperitoneally with normal saline, the SeNPs group treated orally with 2 mg/kg of SeNPs, the SeNPs@VITC nanocomposite group treated orally with 2 mg/kg of SeNPs@VITC nanocomposite, the NIC group injected intraperitoneally with 1.25 mL/kg of NIC, the NIC+ SeNPs group received SeNPs plus NIC, and the NIC+ SeNPs@VITC nanocomposite group received SeNPs@VITC nanocomposite plus NIC. Treatments were administered over a 28-day period.</p><p><strong>Results: </strong>NIC treatment significantly caused poor sperm quality, decreased serum testosterone, increased follicle-stimulating hormone (FSH), luteinizing hormone (LH) concentrations, reduced hemoglobin levels, leukocytosis, disrupted testicular oxidant/antioxidant balance, and disorganized testicular structure. The construction of the novel SeNPs@VITC nanocomposite, compared to NIC plus SeNPs alone, demonstrated a more potent ameliorative effect on NIC-induced reproductive toxicity in adult rats. The SeNPs@VITC nanocomposite significantly increased sperm count, reduced the percentage of sperm head abnormalities, lowered both serum FSH and LH concentrations, and improved the hemoglobin response.</p><p><strong>Conclusions: </strong>Both SeNPs and SeNPs@VITC nanocomposite alleviated the testicular toxicity induced by NIC, but the SeNPs@VITC nanocomposite exhibited superior efficacy. The SeNPs@VITC nanocomposite could be employed to advance enhanced therapeutic strategies for addressing male infertility.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 5","pages":"tfae154"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae154","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The tobacco epidemic signifies a major public health threat. Nicotine (NIC), a major active constituent in tobacco, impedes male fertility and semen quality. This work is implemented to explore the potential of selenium nanoparticles (SeNPs) and the newly fabricated SeNPs @vitamin C (SeNPs@VITC) nanocomposite in mitigating testicular toxicity induced by NIC.
Materials and methods: The six groups of 48 adult Wistar rats were designed as follows: the control group injected intraperitoneally with normal saline, the SeNPs group treated orally with 2 mg/kg of SeNPs, the SeNPs@VITC nanocomposite group treated orally with 2 mg/kg of SeNPs@VITC nanocomposite, the NIC group injected intraperitoneally with 1.25 mL/kg of NIC, the NIC+ SeNPs group received SeNPs plus NIC, and the NIC+ SeNPs@VITC nanocomposite group received SeNPs@VITC nanocomposite plus NIC. Treatments were administered over a 28-day period.
Results: NIC treatment significantly caused poor sperm quality, decreased serum testosterone, increased follicle-stimulating hormone (FSH), luteinizing hormone (LH) concentrations, reduced hemoglobin levels, leukocytosis, disrupted testicular oxidant/antioxidant balance, and disorganized testicular structure. The construction of the novel SeNPs@VITC nanocomposite, compared to NIC plus SeNPs alone, demonstrated a more potent ameliorative effect on NIC-induced reproductive toxicity in adult rats. The SeNPs@VITC nanocomposite significantly increased sperm count, reduced the percentage of sperm head abnormalities, lowered both serum FSH and LH concentrations, and improved the hemoglobin response.
Conclusions: Both SeNPs and SeNPs@VITC nanocomposite alleviated the testicular toxicity induced by NIC, but the SeNPs@VITC nanocomposite exhibited superior efficacy. The SeNPs@VITC nanocomposite could be employed to advance enhanced therapeutic strategies for addressing male infertility.