Super-resolution of biomedical volumes with 2D supervision.

Cheng Jiang, Alexander Gedeon, Yiwei Lyu, Eric Landgraf, Yufeng Zhang, Xinhai Hou, Akhil Kondepudi, Asadur Chowdury, Honglak Lee, Todd Hollon
{"title":"Super-resolution of biomedical volumes with 2D supervision.","authors":"Cheng Jiang, Alexander Gedeon, Yiwei Lyu, Eric Landgraf, Yufeng Zhang, Xinhai Hou, Akhil Kondepudi, Asadur Chowdury, Honglak Lee, Todd Hollon","doi":"10.1109/cvprw63382.2024.00690","DOIUrl":null,"url":null,"abstract":"<p><p>Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth/z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens. This intrinsic characteristic allows for super-resolution models trained on high-resolution images from one plane (e.g., XY) to effectively generalize to others (XZ, YZ), overcoming the traditional dependency on orientation. We focus on the application of MSDSR to stimulated Raman histology (SRH), an optical imaging modality for biological specimen analysis and intraoperative diagnosis, characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning. To evaluate MSDSR's efficacy, we introduce a new performance metric, SliceFID, and demonstrate MSDSR's superior performance over baseline models through extensive evaluations. Our findings reveal that MSDSR not only significantly enhances the quality and resolution of 3D volumetric data, but also addresses major obstacles hindering the broader application of 3D volumetric microscopy in clinical diagnostics and biomedical research.</p>","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"2024 ","pages":"6966-6977"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvprw63382.2024.00690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth/z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens. This intrinsic characteristic allows for super-resolution models trained on high-resolution images from one plane (e.g., XY) to effectively generalize to others (XZ, YZ), overcoming the traditional dependency on orientation. We focus on the application of MSDSR to stimulated Raman histology (SRH), an optical imaging modality for biological specimen analysis and intraoperative diagnosis, characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning. To evaluate MSDSR's efficacy, we introduce a new performance metric, SliceFID, and demonstrate MSDSR's superior performance over baseline models through extensive evaluations. Our findings reveal that MSDSR not only significantly enhances the quality and resolution of 3D volumetric data, but also addresses major obstacles hindering the broader application of 3D volumetric microscopy in clinical diagnostics and biomedical research.

通过二维监控实现生物医学体积的超分辨率。
体视生物医学显微镜有可能增加从临床组织标本中提取的诊断信息,提高人类病理学家和计算病理模型的诊断准确性。遗憾的是,将三维(3D)容积显微技术融入临床医学的障碍包括成像时间长、深度/Z 轴分辨率差以及高质量容积数据量不足。利用丰富的高分辨率二维显微镜数据,我们引入了用于超分辨率的掩蔽切片扩散(MSDSR),它利用了生物标本所有空间维度数据生成分布的固有等价性。这一固有特性使得在一个平面(如 XY)的高分辨率图像上训练出来的超分辨率模型可以有效地推广到其他平面(XZ、YZ),克服了传统的方向依赖性。我们重点研究了 MSDSR 在受激拉曼组织学(SRH)中的应用,SRH 是一种用于生物标本分析和术中诊断的光学成像模式,其特点是能快速获取高分辨率二维图像,但光学 Z 切片速度慢、成本高。为了评估 MSDSR 的功效,我们引入了新的性能指标 SliceFID,并通过广泛的评估证明了 MSDSR 优于基线模型的性能。我们的研究结果表明,MSDSR 不仅能显著提高三维容积数据的质量和分辨率,还能解决阻碍三维容积显微技术在临床诊断和生物医学研究中更广泛应用的主要障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信