Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data.

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2024-10-01 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00381
Danilo Benozzo, Giacomo Baggio, Giorgia Baron, Alessandro Chiuso, Sandro Zampieri, Alessandra Bertoldo
{"title":"Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data.","authors":"Danilo Benozzo, Giacomo Baggio, Giorgia Baron, Alessandro Chiuso, Sandro Zampieri, Alessandra Bertoldo","doi":"10.1162/netn_a_00381","DOIUrl":null,"url":null,"abstract":"<p><p>This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 3","pages":"965-988"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00381","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.

利用静息态 fMRI 数据的线性状态空间模型分析大脑层次结构的不对称性。
这项研究对静息态功能磁共振成像(rsfMRI)研究中传统的零滞后统计提出了挑战。相反,它主张考虑时滞相互作用,以揭示大脑层次结构的方向性和不对称性。有效连通性(EC)是动态因果建模(DCM)中的状态矩阵,是研究线性状态空间系统描述中动态特性和因果相互作用的常用指标。在此,我们重点研究如何将时滞统计纳入 DCM 框架,从而产生非对称 EC 矩阵。我们的方法包括分解 EC 矩阵,揭示稳态差分交叉协方差矩阵,该矩阵负责模拟信息流并引入时间可逆性。具体来说,受微分协方差非对角线部分的影响,系统的动态表现出一种卷曲的稳态流动成分,它打破了详细的平衡,并使动态偏离平衡。我们的实证研究结果表明,EC 矩阵的传出强度与微分交叉协方差描述的流动相关,而传入强度主要由零滞后协方差驱动,强调了条件独立性而非方向性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信