Subsurface Microbial Colonization at Mineral-Filled Veins in 2-Billion-Year-Old Mafic Rock from the Bushveld Igneous Complex, South Africa.

IF 3.3 3区 生物学 Q2 ECOLOGY
Yohey Suzuki, Susan J Webb, Mariko Kouduka, Hanae Kobayashi, Julio Castillo, Jens Kallmeyer, Kgabo Moganedi, Amy J Allwright, Reiner Klemd, Frederick Roelofse, Mabatho Mapiloko, Stuart J Hill, Lewis D Ashwal, Robert B Trumbull
{"title":"Subsurface Microbial Colonization at Mineral-Filled Veins in 2-Billion-Year-Old Mafic Rock from the Bushveld Igneous Complex, South Africa.","authors":"Yohey Suzuki, Susan J Webb, Mariko Kouduka, Hanae Kobayashi, Julio Castillo, Jens Kallmeyer, Kgabo Moganedi, Amy J Allwright, Reiner Klemd, Frederick Roelofse, Mabatho Mapiloko, Stuart J Hill, Lewis D Ashwal, Robert B Trumbull","doi":"10.1007/s00248-024-02434-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in subsurface microbiology have demonstrated the habitability of multi-million-year-old igneous rocks, despite the scarce energy supply from rock-water interactions. Given the minimal evolution coupled with exceedingly slow metabolic rates in subsurface ecosystems, spatiotemporally stable igneous rocks can sustain microbes over geological time scales. This study investigated a 2-billion-year-old mafic rock in the Bushveld Igneous Complex, South Africa, where ultradeep drilling is being executed by the International Continental Scientific Drilling Program (ICDP). New procedures were successfully developed to simultaneously detect indigenous and contaminant microbial cells in a drill core sample. Precision rock sectioning coupled with infrared, fluorescence, and electron microscopy imaging of the rock section with submicron resolution revealed microbial colonization in veins filled with clay minerals. The entry and exit of microbial cells in the veins are severely limited by tight packing with clay minerals, the formation of which supplies energy sources for long-term habitability. Further microbiological characterization of drilled rock cores from the Bushveld Igneous Complex will expand the understanding of microbial evolution in deep igneous rocks over 2 billion years.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"116"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02434-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in subsurface microbiology have demonstrated the habitability of multi-million-year-old igneous rocks, despite the scarce energy supply from rock-water interactions. Given the minimal evolution coupled with exceedingly slow metabolic rates in subsurface ecosystems, spatiotemporally stable igneous rocks can sustain microbes over geological time scales. This study investigated a 2-billion-year-old mafic rock in the Bushveld Igneous Complex, South Africa, where ultradeep drilling is being executed by the International Continental Scientific Drilling Program (ICDP). New procedures were successfully developed to simultaneously detect indigenous and contaminant microbial cells in a drill core sample. Precision rock sectioning coupled with infrared, fluorescence, and electron microscopy imaging of the rock section with submicron resolution revealed microbial colonization in veins filled with clay minerals. The entry and exit of microbial cells in the veins are severely limited by tight packing with clay minerals, the formation of which supplies energy sources for long-term habitability. Further microbiological characterization of drilled rock cores from the Bushveld Igneous Complex will expand the understanding of microbial evolution in deep igneous rocks over 2 billion years.

南非布什维尔德火成岩群 20 亿年前的岩浆岩中矿物填充矿脉的地下微生物定殖。
地表下微生物学的最新进展表明,尽管岩石与水相互作用产生的能量供应匮乏,但已有数百万年历史的火成岩仍具有宜居性。由于地下生态系统的进化速度极低,新陈代谢速度极慢,时空稳定的火成岩可以在地质时间尺度上维持微生物的生存。这项研究调查了南非布什维尔德火成岩群(Bushveld Igneous Complex)中具有 20 亿年历史的岩浆岩,国际大陆科学钻探计划(ICDP)正在该地区进行超深层钻探。成功开发了同时检测钻芯样本中本地和污染微生物细胞的新程序。精确的岩石切片与亚微米分辨率的红外、荧光和电子显微镜成像相结合,揭示了充满粘土矿物的矿脉中的微生物定植情况。由于粘土矿物的紧密堆积,矿脉中微生物细胞的进出受到严重限制,而粘土矿物的形成为长期居住提供了能源。对布什维尔德火成岩群的钻孔岩芯进行进一步的微生物特征描述,将扩大对 20 亿年来深火成岩中微生物演化的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信