Yu Du, Jingzhang Sun, Chien-Ying Li, Bang-Hung Yang, Tung-Hsin Wu, Greta S P Mok
{"title":"Deep learning-based multi-frequency denoising for myocardial perfusion SPECT.","authors":"Yu Du, Jingzhang Sun, Chien-Ying Li, Bang-Hung Yang, Tung-Hsin Wu, Greta S P Mok","doi":"10.1186/s40658-024-00680-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep learning (DL)-based denoising has been proven to improve image quality and quantitation accuracy of low dose (LD) SPECT. However, conventional DL-based methods used SPECT images with mixed frequency components. This work aims to develop an integrated multi-frequency denoising network to further enhance LD myocardial perfusion (MP) SPECT denoising.</p><p><strong>Methods: </strong>Fifty anonymized patients who underwent routine <sup>99m</sup>Tc-sestamibi stress SPECT/CT scans were retrospectively recruited. Three LD datasets were obtained by reducing the 10 s acquisition time of full dose (FD) SPECT to be 5, 2 and 1 s per projection based on the list mode data for a total of 60 projections. FD and LD projections were Fourier transformed to magnitude and phase images, which were then separated into two or three frequency bands. Each frequency band was then inversed Fourier transformed back to the image domain. We proposed a 3D integrated attention-guided multi-frequency conditional generative adversarial network (AttMFGAN) and compared with AttGAN, and separate AttGAN for multi-frequency bands denoising (AttGAN-MF).The multi-frequency FD and LD projections of 35, 5 and 10 patients were paired for training, validation and testing. The LD projections to be tested were separated to multi-frequency components and input to corresponding networks to get the denoised components, which were summed to get the final denoised projections. Voxel-based error indices were measured on the cardiac region on the reconstructed images. The perfusion defect size (PDS) was also analyzed.</p><p><strong>Results: </strong>AttGAN-MF and AttMFGAN have superior performance on all physical and clinical indices as compared to conventional AttGAN. The integrated AttMFGAN is better than AttGAN-MF. Multi-frequency denoising with two frequency bands have generally better results than corresponding three-frequency bands methods.</p><p><strong>Conclusions: </strong>AttGAN-MF and AttMFGAN are promising to further improve LD MP SPECT denoising.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"80"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00680-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deep learning (DL)-based denoising has been proven to improve image quality and quantitation accuracy of low dose (LD) SPECT. However, conventional DL-based methods used SPECT images with mixed frequency components. This work aims to develop an integrated multi-frequency denoising network to further enhance LD myocardial perfusion (MP) SPECT denoising.
Methods: Fifty anonymized patients who underwent routine 99mTc-sestamibi stress SPECT/CT scans were retrospectively recruited. Three LD datasets were obtained by reducing the 10 s acquisition time of full dose (FD) SPECT to be 5, 2 and 1 s per projection based on the list mode data for a total of 60 projections. FD and LD projections were Fourier transformed to magnitude and phase images, which were then separated into two or three frequency bands. Each frequency band was then inversed Fourier transformed back to the image domain. We proposed a 3D integrated attention-guided multi-frequency conditional generative adversarial network (AttMFGAN) and compared with AttGAN, and separate AttGAN for multi-frequency bands denoising (AttGAN-MF).The multi-frequency FD and LD projections of 35, 5 and 10 patients were paired for training, validation and testing. The LD projections to be tested were separated to multi-frequency components and input to corresponding networks to get the denoised components, which were summed to get the final denoised projections. Voxel-based error indices were measured on the cardiac region on the reconstructed images. The perfusion defect size (PDS) was also analyzed.
Results: AttGAN-MF and AttMFGAN have superior performance on all physical and clinical indices as compared to conventional AttGAN. The integrated AttMFGAN is better than AttGAN-MF. Multi-frequency denoising with two frequency bands have generally better results than corresponding three-frequency bands methods.
Conclusions: AttGAN-MF and AttMFGAN are promising to further improve LD MP SPECT denoising.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.