Novel Quinoline Nitrate Derivatives: Synthesis, Characterization, and Evaluation of their Anticancer Activity with a Focus on Molecular Docking and NO Release.
{"title":"Novel Quinoline Nitrate Derivatives: Synthesis, Characterization, and Evaluation of their Anticancer Activity with a Focus on Molecular Docking and NO Release.","authors":"Venkata Sowjanya Thanneeru, Naresh Panigrahi","doi":"10.2174/0118715206315415240830052608","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nitric Oxide (NO) has recently gained recognition as a promising approach in the field of cancer therapy. The quinoline scaffold is pivotal in cancer drug research and is known for its versatility and diverse mechanisms of action.</p><p><strong>Objective: </strong>This study presents the synthesis, characterization, and evaluation of novel quinoline nitrate derivatives as potential anticancer agents.</p><p><strong>Methods: </strong>The compounds were synthesized through a multi-step process involving the preparation of substituted 1-(2-aminophenyl) ethan-1-one, followed by the synthesis of substituted 2- (chloromethyl)-3,4-dimethylquinolines, and finally, the formation of substituted (3,4- dimethylquinolin-2-yl) methyl nitrate derivatives. The synthesized compounds were characterized using various spectroscopic techniques. Molecular docking studies were conducted to assess the binding affinity of the compounds to the EGFR tyrosine kinase domain.</p><p><strong>Results: </strong>The docking scores revealed varying degrees of binding affinity, with compound 6k exhibiting the highest score. The results suggested a correlation between molecular docking scores and anticancer activity. Further evaluations included MTT assays to determine the cytotoxicity of the compounds against Non-Small Cell Lung Cancer (A-549) and pancreatic cancer (PANC-1) cell lines. Compounds with electron-donating groups displayed notable anticancer potential, and there was a correlation between NO release and anticancer activity. The study also investigated nitric oxide release from the compounds, revealing compound 6g as the highest NO releaser.</p><p><strong>Conclusion: </strong>The synthesized quinoline nitrate derivatives showed promising anticancer activity, with compound 6g standing out as a potential lead compound. The correlation between molecular docking, NO release, and anticancer activity suggests the importance of specific structural features in the design of effective anticancer agents.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206315415240830052608","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nitric Oxide (NO) has recently gained recognition as a promising approach in the field of cancer therapy. The quinoline scaffold is pivotal in cancer drug research and is known for its versatility and diverse mechanisms of action.
Objective: This study presents the synthesis, characterization, and evaluation of novel quinoline nitrate derivatives as potential anticancer agents.
Methods: The compounds were synthesized through a multi-step process involving the preparation of substituted 1-(2-aminophenyl) ethan-1-one, followed by the synthesis of substituted 2- (chloromethyl)-3,4-dimethylquinolines, and finally, the formation of substituted (3,4- dimethylquinolin-2-yl) methyl nitrate derivatives. The synthesized compounds were characterized using various spectroscopic techniques. Molecular docking studies were conducted to assess the binding affinity of the compounds to the EGFR tyrosine kinase domain.
Results: The docking scores revealed varying degrees of binding affinity, with compound 6k exhibiting the highest score. The results suggested a correlation between molecular docking scores and anticancer activity. Further evaluations included MTT assays to determine the cytotoxicity of the compounds against Non-Small Cell Lung Cancer (A-549) and pancreatic cancer (PANC-1) cell lines. Compounds with electron-donating groups displayed notable anticancer potential, and there was a correlation between NO release and anticancer activity. The study also investigated nitric oxide release from the compounds, revealing compound 6g as the highest NO releaser.
Conclusion: The synthesized quinoline nitrate derivatives showed promising anticancer activity, with compound 6g standing out as a potential lead compound. The correlation between molecular docking, NO release, and anticancer activity suggests the importance of specific structural features in the design of effective anticancer agents.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.