James M. Bradley, Michael Bunsick, George Ly, Bruno Aquino, Flora Zhiqi Wang, Duncan Holbrook-Smith, Shingo Suginoo, Dylan Bradizza, Naoki Kato, Omar As’sadiq, Nina Marsh, Hiroyuki Osada, François-Didier Boyer, Christopher S.P. McErlean, Yuichiro Tsuchiya, Rajagopal Subramaniam, Dario Bonetta, Peter McCourt, Shelley Lumba
{"title":"Modulation of fungal phosphate homeostasis by the plant hormone strigolactone","authors":"James M. Bradley, Michael Bunsick, George Ly, Bruno Aquino, Flora Zhiqi Wang, Duncan Holbrook-Smith, Shingo Suginoo, Dylan Bradizza, Naoki Kato, Omar As’sadiq, Nina Marsh, Hiroyuki Osada, François-Didier Boyer, Christopher S.P. McErlean, Yuichiro Tsuchiya, Rajagopal Subramaniam, Dario Bonetta, Peter McCourt, Shelley Lumba","doi":"10.1016/j.molcel.2024.09.004","DOIUrl":null,"url":null,"abstract":"Inter-kingdom communication through small molecules is essential to the coexistence of organisms in an ecosystem. In soil communities, the plant root is a nexus of interactions for a remarkable number of fungi and is a source of small-molecule plant hormones that shape fungal compositions. Although hormone signaling pathways are established in plants, how fungi perceive and respond to molecules is unclear because many plant-associated fungi are recalcitrant to experimentation. Here, we develop an approach using the model fungus, <em>Saccharomyces cerevisiae</em>, to elucidate mechanisms of fungal response to plant hormones. Two plant hormones, strigolactone and methyl jasmonate, produce unique transcript profiles in yeast, affecting phosphate and sugar metabolism, respectively. Genetic analysis in combination with structural studies suggests that SLs require the high-affinity transporter Pho84 to modulate phosphate homeostasis. The ability to study small-molecule plant hormones in a tractable genetic system should have utility in understanding fungal-plant interactions.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"58 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.09.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inter-kingdom communication through small molecules is essential to the coexistence of organisms in an ecosystem. In soil communities, the plant root is a nexus of interactions for a remarkable number of fungi and is a source of small-molecule plant hormones that shape fungal compositions. Although hormone signaling pathways are established in plants, how fungi perceive and respond to molecules is unclear because many plant-associated fungi are recalcitrant to experimentation. Here, we develop an approach using the model fungus, Saccharomyces cerevisiae, to elucidate mechanisms of fungal response to plant hormones. Two plant hormones, strigolactone and methyl jasmonate, produce unique transcript profiles in yeast, affecting phosphate and sugar metabolism, respectively. Genetic analysis in combination with structural studies suggests that SLs require the high-affinity transporter Pho84 to modulate phosphate homeostasis. The ability to study small-molecule plant hormones in a tractable genetic system should have utility in understanding fungal-plant interactions.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.