Unlocking Copper-Free Interfacial Asymmetric C–C Coupling for Ethylene Photosynthesis from CO2 and H2O

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wentao Song, Cheng Wang, Yong Liu, Kok Chan Chong, Xinyue Zhang, Tie Wang, Yuanming Zhang, Bowen Li, Jianwu Tian, Xianhe Zhang, Xinyun Wang, Bingqing Yao, Xi Wang, Yukun Xiao, Yingfang Yao, Xianwen Mao, Qian He, Zhiqun Lin, Zhigang Zou, Bin Liu
{"title":"Unlocking Copper-Free Interfacial Asymmetric C–C Coupling for Ethylene Photosynthesis from CO2 and H2O","authors":"Wentao Song, Cheng Wang, Yong Liu, Kok Chan Chong, Xinyue Zhang, Tie Wang, Yuanming Zhang, Bowen Li, Jianwu Tian, Xianhe Zhang, Xinyun Wang, Bingqing Yao, Xi Wang, Yukun Xiao, Yingfang Yao, Xianwen Mao, Qian He, Zhiqun Lin, Zhigang Zou, Bin Liu","doi":"10.1021/jacs.4c10023","DOIUrl":null,"url":null,"abstract":"Solar-driven carbon dioxide (CO<sub>2</sub>) reduction into C<sub>2+</sub> products such as ethylene represents an enticing route toward achieving carbon neutrality. However, due to sluggish electron transfer and intricate C–C coupling, it remains challenging to achieve highly efficient and selective ethylene production from CO<sub>2</sub> and H<sub>2</sub>O beyond capitalizing on Cu-based catalysts. Herein, we report a judicious design to attain asymmetric C–C coupling through interfacial defect-rendered tandem catalytic centers within a sulfur-vacancy-rich MoS<sub><i>x</i></sub>/Fe<sub>2</sub>O<sub>3</sub> photocatalyst sheet, enabling a robust CO<sub>2</sub> photoreduction to ethylene without the need for copper, noble metals, and sacrificial agents. Specifically, interfacial S vacancies induce adjacent under-coordinated S atoms to form Fe–S bonds as a rapid electron-transfer pathway for yielding a Z-scheme band alignment. Moreover, these S vacancies further modulate the strong coupling interaction to generate a nitrogenase-analogous Mo–Fe heteronuclear unit and induce the upward shift of the d-band center. This bioinspired interface structure effectively suppresses electrostatic repulsion between neighboring *CO and *COH intermediates via d-p hybridization, ultimately facilitating an asymmetric C–C coupling to achieve a remarkable solar-to-chemical efficiency of 0.565% with a superior selectivity of 84.9% for ethylene production. Further strengthened by MoS<sub><i>x</i></sub>/WO<sub>3</sub>, our design unveils a promising platform for optimizing interfacial electron transfer and offers a new option for C<sub>2+</sub> synthesis from CO<sub>2</sub> and H<sub>2</sub>O using copper-free and noble metal-free catalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven carbon dioxide (CO2) reduction into C2+ products such as ethylene represents an enticing route toward achieving carbon neutrality. However, due to sluggish electron transfer and intricate C–C coupling, it remains challenging to achieve highly efficient and selective ethylene production from CO2 and H2O beyond capitalizing on Cu-based catalysts. Herein, we report a judicious design to attain asymmetric C–C coupling through interfacial defect-rendered tandem catalytic centers within a sulfur-vacancy-rich MoSx/Fe2O3 photocatalyst sheet, enabling a robust CO2 photoreduction to ethylene without the need for copper, noble metals, and sacrificial agents. Specifically, interfacial S vacancies induce adjacent under-coordinated S atoms to form Fe–S bonds as a rapid electron-transfer pathway for yielding a Z-scheme band alignment. Moreover, these S vacancies further modulate the strong coupling interaction to generate a nitrogenase-analogous Mo–Fe heteronuclear unit and induce the upward shift of the d-band center. This bioinspired interface structure effectively suppresses electrostatic repulsion between neighboring *CO and *COH intermediates via d-p hybridization, ultimately facilitating an asymmetric C–C coupling to achieve a remarkable solar-to-chemical efficiency of 0.565% with a superior selectivity of 84.9% for ethylene production. Further strengthened by MoSx/WO3, our design unveils a promising platform for optimizing interfacial electron transfer and offers a new option for C2+ synthesis from CO2 and H2O using copper-free and noble metal-free catalysts.

Abstract Image

利用二氧化碳和水进行乙烯光合作用的无铜不对称 C-C 偶联
太阳能驱动的二氧化碳(CO2)还原成乙烯等 C2+ 产物是实现碳中和的诱人途径。然而,由于电子传递迟缓和复杂的 C-C 偶联,除了利用铜基催化剂之外,从 CO2 和 H2O 中高效、选择性地生产乙烯仍具有挑战性。在此,我们报告了一种明智的设计,即在富含硫空位的 MoSx/Fe2O3 光催化剂片中,通过界面缺陷渲染的串联催化中心实现不对称的 C-C 耦合,从而在无需铜、贵金属和牺牲剂的情况下将 CO2 强力光还原为乙烯。具体来说,界面 S 空位诱导相邻的欠配位 S 原子形成 Fe-S 键,作为产生 Z 型带排列的快速电子转移途径。此外,这些 S 空位还能进一步调节强耦合作用,生成类似于氮酶的 Mo-Fe 异核单元,并诱导 d 带中心上移。这种受生物启发的界面结构通过 d-p 杂化有效抑制了相邻 *CO 和 *COH 中间体之间的静电排斥,最终促进了不对称的 C-C 耦合,实现了 0.565% 的显著太阳能转化效率,乙烯生产的选择性高达 84.9%。通过 MoSx/WO3 的进一步强化,我们的设计为优化界面电子传递提供了一个前景广阔的平台,并为使用无铜和无贵金属催化剂从 CO2 和 H2O 合成 C2+ 提供了一种新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信