Efficient enhancement of the antimicrobial activity of Chlamydomonas reinhardtii extract by transgene expression and molecular modification using ionizing radiation

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shubham Kumar Dubey, Seung Sik Lee, Jin-Hong Kim
{"title":"Efficient enhancement of the antimicrobial activity of Chlamydomonas reinhardtii extract by transgene expression and molecular modification using ionizing radiation","authors":"Shubham Kumar Dubey,&nbsp;Seung Sik Lee,&nbsp;Jin-Hong Kim","doi":"10.1186/s13068-024-02575-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ionizing radiation has been used for mutagenesis or material modification. The potential to use microalgae as a platform for antimicrobial production has been reported, but little work has been done to advance it beyond characterization to biotechnology. This study explored two different applications of ionizing radiation as a metabolic remodeler and a molecular modifier to enhance the antimicrobial activity of total protein and solvent extracts of <i>Chlamydomonas reinhardtii</i> cells.</p><h3>Results</h3><p>First, highly efficient transgenic <i>C. reinhardtii</i> strains expressing the plant-derived antimicrobial peptides, AtPR1 or AtTHI2.1, were developed using the radiation-inducible promoter, <i>CrRPA70Ap</i>. Low transgene expression was significantly improved through X-irradiation (12–50 Gy), with peak activity observed within 2 h. Protein extracts from these strains after X-irradiation showed enhanced antimicrobial activity against the prokaryotic bacterium, <i>Pseudomonas syringae</i>, and the eukaryotic fungus, <i>Cryptococcus neoformans</i>. In addition, X-irradiation (12 Gy) increased the growth and biomass of the transgenic strains. Second, <i>C. reinhardtii</i> cell extracts in ethanol were γ-irradiated (5–20 kGy), leading to molecular modifications and increased antimicrobial activity against the phytopathogenic bacteria, <i>P. syringae</i> and <i>Burkholderia glumae</i>, in a dose-dependent manner. These changes were associated with alterations in fatty acid composition. When both transgenic expression of antimicrobial peptides and molecular modification of bioactive substances were applied, the antimicrobial activity of <i>C. reinhardtii</i> cell extracts was further enhanced to some extent.</p><h3>Conclusion</h3><p>Overall, these findings suggest that ionizing radiation can significantly enhance the antimicrobial potential of <i>C. reinhardtii</i> through efficient transgene expression and molecular modification of bioactive substances, making it a valuable source of natural antimicrobial agents. Ionizing radiation can act not only as a metabolic remodeler of transgene expression in microalgae but also as a molecular modifier of the bioactive substances.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02575-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02575-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Ionizing radiation has been used for mutagenesis or material modification. The potential to use microalgae as a platform for antimicrobial production has been reported, but little work has been done to advance it beyond characterization to biotechnology. This study explored two different applications of ionizing radiation as a metabolic remodeler and a molecular modifier to enhance the antimicrobial activity of total protein and solvent extracts of Chlamydomonas reinhardtii cells.

Results

First, highly efficient transgenic C. reinhardtii strains expressing the plant-derived antimicrobial peptides, AtPR1 or AtTHI2.1, were developed using the radiation-inducible promoter, CrRPA70Ap. Low transgene expression was significantly improved through X-irradiation (12–50 Gy), with peak activity observed within 2 h. Protein extracts from these strains after X-irradiation showed enhanced antimicrobial activity against the prokaryotic bacterium, Pseudomonas syringae, and the eukaryotic fungus, Cryptococcus neoformans. In addition, X-irradiation (12 Gy) increased the growth and biomass of the transgenic strains. Second, C. reinhardtii cell extracts in ethanol were γ-irradiated (5–20 kGy), leading to molecular modifications and increased antimicrobial activity against the phytopathogenic bacteria, P. syringae and Burkholderia glumae, in a dose-dependent manner. These changes were associated with alterations in fatty acid composition. When both transgenic expression of antimicrobial peptides and molecular modification of bioactive substances were applied, the antimicrobial activity of C. reinhardtii cell extracts was further enhanced to some extent.

Conclusion

Overall, these findings suggest that ionizing radiation can significantly enhance the antimicrobial potential of C. reinhardtii through efficient transgene expression and molecular modification of bioactive substances, making it a valuable source of natural antimicrobial agents. Ionizing radiation can act not only as a metabolic remodeler of transgene expression in microalgae but also as a molecular modifier of the bioactive substances.

利用电离辐射进行转基因表达和分子修饰,有效提高衣藻提取物的抗菌活性
背景电离辐射已被用于诱变或材料改性。利用微藻作为抗菌剂生产平台的潜力已有报道,但将其从特征描述推进到生物技术方面的工作还很少。本研究探索了电离辐射作为新陈代谢重塑剂和分子修饰剂的两种不同应用,以增强莱茵衣藻细胞总蛋白和溶剂提取物的抗菌活性。经过 X 射线照射(12-50 Gy)后,低转基因表达得到明显改善,在 2 小时内观察到峰值活性。X 射线照射后,这些菌株的蛋白质提取物对原核细菌丁香假单胞菌和真菌隐球菌的抗菌活性增强。此外,X-辐照(12 Gy)也增加了转基因菌株的生长和生物量。其次,对乙醇中的 C. reinhardtii 细胞提取物进行γ-辐照(5-20 kGy),可导致分子改变,并以剂量依赖的方式提高对植物病原菌 P. syringae 和 Burkholderia glumae 的抗菌活性。这些变化与脂肪酸组成的改变有关。总之,这些研究结果表明,电离辐射可以通过高效的转基因表达和生物活性物质的分子修饰显著提高 C. reinhardtii 的抗菌潜力,使其成为天然抗菌剂的重要来源。电离辐射不仅可以作为微藻转基因表达的代谢重塑剂,还可以作为生物活性物质的分子修饰剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信