F.C. Destro, R. Fournet, R. Bounaceur, V. Warth, P.A. Glaude, B. Sirjean
{"title":"Automatization of theoretical kinetic data generation for tabulated TS models building - Part 1: Application to 1,3-H-shift reactions","authors":"F.C. Destro, R. Fournet, R. Bounaceur, V. Warth, P.A. Glaude, B. Sirjean","doi":"10.1016/j.combustflame.2024.113731","DOIUrl":null,"url":null,"abstract":"<div><div>Estimation of kinetic parameters is a key aspect of chemical combustion modeling and several approaches were developed to approximate unknown data. In this work, a code in Python was developed to build tables of transition state (TS) models automatically for intramolecular H-shift reactions in alkyl radicals. The code generates the kinetic rules for all the possible combinations of methyl-substituted reactions based on the structures of the minimal, non-substituted, reactant, TS, and product. The code is able to create and differentiate multiple transition state configurations, considering the axial and equatorial positions for the cyclic substituents and including all the possible pathways for the reactions, which is shown to be an important feature in performing accurate automatic kinetic calculations. Each structure is automatically submitted to geometry optimization and electronic energy calculations, as well as the relaxed scans of the torsional modes identified by the code. From the results of electronic calculations, the rate constants for each pathway are obtained automatically by the application of the transition state theory with tunneling corrections, in a defined temperature range. The kinetic coefficients, as well as the modified Arrhenius parameters, are then assembled and organized to create a final table that connects the kinetic data with TS structure characteristics. These tables can be directly applied as a kinetic data source for reaction mechanism development. The ability of the code to generate reliable rate constants was tested for 1,3-H-shift reactions and the results were compared with theoretical data manually produced, and showed a good agreement. In particular, the code was able to create all the transition state configurations, with an exhaustive description of all possible reaction pathways, using a rigorous and systematic counting based on symmetry, stereocenters, and diastereomers. The proposed method leads to more accurate results on these aspects, compared to repetitive hand calculations of dozens of rate constants.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113731"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004401","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Estimation of kinetic parameters is a key aspect of chemical combustion modeling and several approaches were developed to approximate unknown data. In this work, a code in Python was developed to build tables of transition state (TS) models automatically for intramolecular H-shift reactions in alkyl radicals. The code generates the kinetic rules for all the possible combinations of methyl-substituted reactions based on the structures of the minimal, non-substituted, reactant, TS, and product. The code is able to create and differentiate multiple transition state configurations, considering the axial and equatorial positions for the cyclic substituents and including all the possible pathways for the reactions, which is shown to be an important feature in performing accurate automatic kinetic calculations. Each structure is automatically submitted to geometry optimization and electronic energy calculations, as well as the relaxed scans of the torsional modes identified by the code. From the results of electronic calculations, the rate constants for each pathway are obtained automatically by the application of the transition state theory with tunneling corrections, in a defined temperature range. The kinetic coefficients, as well as the modified Arrhenius parameters, are then assembled and organized to create a final table that connects the kinetic data with TS structure characteristics. These tables can be directly applied as a kinetic data source for reaction mechanism development. The ability of the code to generate reliable rate constants was tested for 1,3-H-shift reactions and the results were compared with theoretical data manually produced, and showed a good agreement. In particular, the code was able to create all the transition state configurations, with an exhaustive description of all possible reaction pathways, using a rigorous and systematic counting based on symmetry, stereocenters, and diastereomers. The proposed method leads to more accurate results on these aspects, compared to repetitive hand calculations of dozens of rate constants.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.