K. Janani , S.S. Mohanrasu , Ardak Kashkynbayev , R. Rakkiyappan
{"title":"Ensemble feature selection via CoCoSo method extended to interval-valued intuitionistic fuzzy environment","authors":"K. Janani , S.S. Mohanrasu , Ardak Kashkynbayev , R. Rakkiyappan","doi":"10.1016/j.matcom.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><div>Feature selection is a crucial step in the process of preparing and refining data. By identifying and retaining only the most informative and discriminative features, one can achieve several benefits, including faster training times, reduced risk of overfitting, improved model generalization, and enhanced interpretability. Ensemble feature selection has demonstrated its efficacy in improving the stability and generalization performance of models and is particularly valuable in high-dimensional datasets and complex machine learning tasks, contributing to the creation of more accurate and robust predictive models. This article presents an innovative ensemble feature selection technique through the development of a unique Multi-criteria decision making (MCDM) model, incorporating both rank aggregation principles and a filter-based algorithm. The proposed MCDM model combines the Combined Compromise Solution (CoCoSo) method and the Archimedean operator within interval-valued intuitionistic fuzzy environments, effectively addressing the challenges of vagueness and imprecision in datasets. A customizable feature selection model is introduced, allowing users to define the number of features, employing a sigmoidal function with a tuning parameter for fuzzification. The assignment of entropy weights in the Interval-valued intuitionistic fuzzy set (IVIFS) environment provides priorities to each column. The method’s effectiveness is assessed on real-world datasets, comparing it with existing approaches and validated through statistical tests such as the Friedman test and post-hoc Conover test, emphasizing its significance in comparison to current methodologies. Based on the results obtained, we inferred that our structured approach to ensemble feature selection, utilizing a specific case of the Archimedean operator, demonstrated superior performance across the datasets. This more generalized methodology enhances the robustness and effectiveness of feature selection by leveraging the strengths of the Archimedean operator, resulting in improved data analysis and model accuracy.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"229 ","pages":"Pages 50-77"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003781","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Feature selection is a crucial step in the process of preparing and refining data. By identifying and retaining only the most informative and discriminative features, one can achieve several benefits, including faster training times, reduced risk of overfitting, improved model generalization, and enhanced interpretability. Ensemble feature selection has demonstrated its efficacy in improving the stability and generalization performance of models and is particularly valuable in high-dimensional datasets and complex machine learning tasks, contributing to the creation of more accurate and robust predictive models. This article presents an innovative ensemble feature selection technique through the development of a unique Multi-criteria decision making (MCDM) model, incorporating both rank aggregation principles and a filter-based algorithm. The proposed MCDM model combines the Combined Compromise Solution (CoCoSo) method and the Archimedean operator within interval-valued intuitionistic fuzzy environments, effectively addressing the challenges of vagueness and imprecision in datasets. A customizable feature selection model is introduced, allowing users to define the number of features, employing a sigmoidal function with a tuning parameter for fuzzification. The assignment of entropy weights in the Interval-valued intuitionistic fuzzy set (IVIFS) environment provides priorities to each column. The method’s effectiveness is assessed on real-world datasets, comparing it with existing approaches and validated through statistical tests such as the Friedman test and post-hoc Conover test, emphasizing its significance in comparison to current methodologies. Based on the results obtained, we inferred that our structured approach to ensemble feature selection, utilizing a specific case of the Archimedean operator, demonstrated superior performance across the datasets. This more generalized methodology enhances the robustness and effectiveness of feature selection by leveraging the strengths of the Archimedean operator, resulting in improved data analysis and model accuracy.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.