{"title":"AI diagnostics in bone oncology for predicting bone metastasis in lung cancer patients using DenseNet-264 deep learning model and radiomics","authors":"Taisheng Zeng , Yusi Chen , Daxin Zhu , Yifeng Huang , Ying Huang , Yijie Chen , Jianshe Shi , Bijiao Ding , Jianlong Huang","doi":"10.1016/j.jbo.2024.100640","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to predict bone metastasis in lung cancer patients using radiomics and deep learning. Early prediction of bone metastasis is crucial for timely intervention and personalized treatment plans. This can improve patient outcomes and quality of life. By integrating advanced imaging techniques with artificial intelligence, this study seeks to enhance predictive accuracy and clinical decision-making.</div></div><div><h3>Methods</h3><div>We included 189 lung cancer patients, comprising 89 with non-bone metastasis and 100 with confirmed bone metastasis. Radiomic features were extracted from CT images, and feature selection was performed using Minimum Redundancy Maximum Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO). We developed and validated a radiomics model and a deep learning model using DenseNet-264. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Statistical comparisons were made using the DeLong test.</div></div><div><h3>Results</h3><div>The radiomics model achieved an AUC of 0.815 on the training set and 0.778 on the validation set. The DenseNet-264 model demonstrated superior performance with an AUC of 0.990 on the training set and 0.971 on the validation set. The DeLong test confirmed that the AUC of the DenseNet-264 model was significantly higher than that of the radiomics model (p < 0.05).</div></div><div><h3>Conclusions</h3><div>The DenseNet-264 model significantly outperforms the radiomics model in predicting bone metastasis in lung cancer patients. The early and accurate prediction provided by the deep learning model can facilitate timely interventions and personalized treatment planning, potentially improving patient outcomes. Future studies should focus on validating these findings in larger, multi-center cohorts and integrating clinical data to further enhance predictive accuracy.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"48 ","pages":"Article 100640"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001209","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to predict bone metastasis in lung cancer patients using radiomics and deep learning. Early prediction of bone metastasis is crucial for timely intervention and personalized treatment plans. This can improve patient outcomes and quality of life. By integrating advanced imaging techniques with artificial intelligence, this study seeks to enhance predictive accuracy and clinical decision-making.
Methods
We included 189 lung cancer patients, comprising 89 with non-bone metastasis and 100 with confirmed bone metastasis. Radiomic features were extracted from CT images, and feature selection was performed using Minimum Redundancy Maximum Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO). We developed and validated a radiomics model and a deep learning model using DenseNet-264. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Statistical comparisons were made using the DeLong test.
Results
The radiomics model achieved an AUC of 0.815 on the training set and 0.778 on the validation set. The DenseNet-264 model demonstrated superior performance with an AUC of 0.990 on the training set and 0.971 on the validation set. The DeLong test confirmed that the AUC of the DenseNet-264 model was significantly higher than that of the radiomics model (p < 0.05).
Conclusions
The DenseNet-264 model significantly outperforms the radiomics model in predicting bone metastasis in lung cancer patients. The early and accurate prediction provided by the deep learning model can facilitate timely interventions and personalized treatment planning, potentially improving patient outcomes. Future studies should focus on validating these findings in larger, multi-center cohorts and integrating clinical data to further enhance predictive accuracy.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.