The electronic and optical properties of group III-V semiconductors: Arsenides and Antimonides

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ruixin Gong , Lianqing Zhu , Qingsong Feng , Lidan Lu , Bingfeng Liu , Yuhao Chen , Yuanbo Zhang , Shiya Zhang , Yang Chen , Zhiying Liu
{"title":"The electronic and optical properties of group III-V semiconductors: Arsenides and Antimonides","authors":"Ruixin Gong ,&nbsp;Lianqing Zhu ,&nbsp;Qingsong Feng ,&nbsp;Lidan Lu ,&nbsp;Bingfeng Liu ,&nbsp;Yuhao Chen ,&nbsp;Yuanbo Zhang ,&nbsp;Shiya Zhang ,&nbsp;Yang Chen ,&nbsp;Zhiying Liu","doi":"10.1016/j.commatsci.2024.113381","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the structural, electronic, and optical properties of zinc-blende III-V semiconductors, particularly arsenides, and antimonides, which are crucial for optoelectronic devices such as transistors, infrared detectors, and quantum technologies due to their wide range of direct bandgaps. In this work, we have employed a first-principles approach integrating G<sub>0</sub>W<sub>0</sub> with the HSE06 hybrid functional and spin–orbit coupling (SOC) to study their fundamental properties. Traditional Density Functional Theory (DFT) methods, particularly those using Generalized Gradient Approximation (GGA) PBE functionals, tend to underestimate bandgaps, leading to discrepancies with experimental results. To address this, our study corrects the bandgap underestimation and refines the calculation of optical constants, including the dielectric function, refractive index, extinction coefficient, and absorption coefficient. Moreover, the optimized lattice constants and electronic properties derived from our computational model strongly correlate with experimental data, demonstrating the model’s reliability in predicting material properties. The findings suggest that our methods can be applied to arsenides and antimonides, offering a pathway to designing materials with optoelectronic properties involving III-V compounds and their complex heterostructures for advanced device applications.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"246 ","pages":"Article 113381"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006025","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the structural, electronic, and optical properties of zinc-blende III-V semiconductors, particularly arsenides, and antimonides, which are crucial for optoelectronic devices such as transistors, infrared detectors, and quantum technologies due to their wide range of direct bandgaps. In this work, we have employed a first-principles approach integrating G0W0 with the HSE06 hybrid functional and spin–orbit coupling (SOC) to study their fundamental properties. Traditional Density Functional Theory (DFT) methods, particularly those using Generalized Gradient Approximation (GGA) PBE functionals, tend to underestimate bandgaps, leading to discrepancies with experimental results. To address this, our study corrects the bandgap underestimation and refines the calculation of optical constants, including the dielectric function, refractive index, extinction coefficient, and absorption coefficient. Moreover, the optimized lattice constants and electronic properties derived from our computational model strongly correlate with experimental data, demonstrating the model’s reliability in predicting material properties. The findings suggest that our methods can be applied to arsenides and antimonides, offering a pathway to designing materials with optoelectronic properties involving III-V compounds and their complex heterostructures for advanced device applications.

Abstract Image

III-V 族半导体的电子和光学特性:砷化物和锑化物
研究锌蓝III-V族半导体(尤其是砷化物和锑化物)的结构、电子和光学特性,由于它们具有广泛的直接带隙,因此对晶体管、红外探测器和量子技术等光电设备至关重要。在这项研究中,我们采用了第一原理方法,将 G0W0 与 HSE06 混合函数和自旋轨道耦合 (SOC) 结合起来,研究它们的基本特性。传统的密度泛函理论(DFT)方法,尤其是使用广义梯度逼近(GGA)PBE 函数的方法,往往会低估带隙,从而导致与实验结果的差异。为了解决这个问题,我们的研究纠正了带隙低估,并完善了光学常数的计算,包括介电函数、折射率、消光系数和吸收系数。此外,我们的计算模型得出的优化晶格常数和电子特性与实验数据密切相关,证明了模型在预测材料特性方面的可靠性。研究结果表明,我们的方法可应用于砷化物和锑化物,为设计具有光电特性的材料提供了一条途径,这些材料涉及 III-V 化合物及其复杂的异质结构,可用于先进的设备应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信