Kuaiyuan Feng , Qufei Song , Yuyang Shen , Lei Lou , Yao Xiao , Hui Guo , Hanyang Gu
{"title":"Development and verification of an MC/MOC two-step scheme for neutronic analysis of FCM-fueled micro gas-cooled reactor","authors":"Kuaiyuan Feng , Qufei Song , Yuyang Shen , Lei Lou , Yao Xiao , Hui Guo , Hanyang Gu","doi":"10.1016/j.anucene.2024.110940","DOIUrl":null,"url":null,"abstract":"<div><div>Gas-cooled microreactors are known for compact designs, high thermal-to-electric efficiencies, long refueling cycles, and flexible deployment capabilities, representing a groundbreaking solution to address the energy requisites of special scenarios. Fully ceramic microencapsulated (FCM) fuel is widely used in gas-cooled microreactors, bringing challenges to neutronic analysis methods. In this paper, an Monte Carlo/Method of Characteristics (MC/MOC) two-step scheme is developed and verified based on the reference case. In this scheme, the continuous-energy Monte Carlo calculations are used for reference calculation and multi-group cross-section generation. The multi-group Monte Carlo calculations are used for multi-group cross-section verification and the MOC solver verification. Fuel multi-group cross-sections are generated with the explicit fuel assembly model by continuous-energy Monte Carlo calculations, and structure multi-group cross-sections are generated with the simplified core model by continuous-energy Monte Carlo calculations. The core calculations are conducted with the MOC calculations. For verification, parameters such as power distribution, neutron spectrum, and control devices worth will be compared. Core calculation results show that the relative errors of MOC results are within −329 pcm, ±5%, ±6%, and ± 2 % for K<sub>eff</sub>, power distribution, neutron spectrum, and control device worth, separately. Moreover, the computation cost of MOC is only 6.6 % of the reference computation cost. The figure of merit results show that the MC-MOC scheme exhibits improved computational efficiency for neutronic analysis of FCM-fueled micro gas-cooled reactor.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gas-cooled microreactors are known for compact designs, high thermal-to-electric efficiencies, long refueling cycles, and flexible deployment capabilities, representing a groundbreaking solution to address the energy requisites of special scenarios. Fully ceramic microencapsulated (FCM) fuel is widely used in gas-cooled microreactors, bringing challenges to neutronic analysis methods. In this paper, an Monte Carlo/Method of Characteristics (MC/MOC) two-step scheme is developed and verified based on the reference case. In this scheme, the continuous-energy Monte Carlo calculations are used for reference calculation and multi-group cross-section generation. The multi-group Monte Carlo calculations are used for multi-group cross-section verification and the MOC solver verification. Fuel multi-group cross-sections are generated with the explicit fuel assembly model by continuous-energy Monte Carlo calculations, and structure multi-group cross-sections are generated with the simplified core model by continuous-energy Monte Carlo calculations. The core calculations are conducted with the MOC calculations. For verification, parameters such as power distribution, neutron spectrum, and control devices worth will be compared. Core calculation results show that the relative errors of MOC results are within −329 pcm, ±5%, ±6%, and ± 2 % for Keff, power distribution, neutron spectrum, and control device worth, separately. Moreover, the computation cost of MOC is only 6.6 % of the reference computation cost. The figure of merit results show that the MC-MOC scheme exhibits improved computational efficiency for neutronic analysis of FCM-fueled micro gas-cooled reactor.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.