Rui Zhang , Lianzhong Huang , Kai Wang , Ranqi Ma , Zhang Ruan , Tian Lan , Boyang Li , Baoshou Zhang
{"title":"Multiple-arc cylinder under flow: Vortex-induced vibration and energy harvesting","authors":"Rui Zhang , Lianzhong Huang , Kai Wang , Ranqi Ma , Zhang Ruan , Tian Lan , Boyang Li , Baoshou Zhang","doi":"10.1016/j.marstruc.2024.103699","DOIUrl":null,"url":null,"abstract":"<div><div>The shape of a cylindrical cross-section affects the vibrational performance. The vortex-induced vibration (VIV) phenomena of multiple-arc cylinders were numerically investigated to assess their impact on hydrodynamic energy harvesting and potential vibration suppression across a flow velocity range of 0.2 m/s to 1.4 m/s (1.767 × 10<sup>4</sup><<em>R</em>e < 1.237 × 10<sup>5</sup>). The study involves five types of multiple-arc cylinders: 4-arc, 8-arc, 16-arc, 24-arc, and circular cylinders. The accuracy of the numerical method was validated through comparison with experimental data. Specifically, increasing the number of arcs generally enhances overall energy conversion efficiency. Then, the VIV response and energy conversion results of the 24-arc cylinder are similar to those of the circular cylinder with maximum efficiency. Notably, the 4-arc cylinder achieves a global maximum amplitude of 0.074 m (<em>A</em>∗ = 0.83) and a power output of 4.4 W with the new P + T mode, making it the most effective configuration for flow velocities between 0.7 and 0.9 m/s. For vibration suppression of multiple-arc cylinders, the appropriate arc structure effectively reduces amplitudes. The small vortices generated by the arc structures disrupt the separation of normal vortices from the boundary layer, leading to approximately a 50 % reduction in amplitude responses for 8-arc and 16-arc cylinders.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"99 ","pages":"Article 103699"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924001278","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The shape of a cylindrical cross-section affects the vibrational performance. The vortex-induced vibration (VIV) phenomena of multiple-arc cylinders were numerically investigated to assess their impact on hydrodynamic energy harvesting and potential vibration suppression across a flow velocity range of 0.2 m/s to 1.4 m/s (1.767 × 104<Re < 1.237 × 105). The study involves five types of multiple-arc cylinders: 4-arc, 8-arc, 16-arc, 24-arc, and circular cylinders. The accuracy of the numerical method was validated through comparison with experimental data. Specifically, increasing the number of arcs generally enhances overall energy conversion efficiency. Then, the VIV response and energy conversion results of the 24-arc cylinder are similar to those of the circular cylinder with maximum efficiency. Notably, the 4-arc cylinder achieves a global maximum amplitude of 0.074 m (A∗ = 0.83) and a power output of 4.4 W with the new P + T mode, making it the most effective configuration for flow velocities between 0.7 and 0.9 m/s. For vibration suppression of multiple-arc cylinders, the appropriate arc structure effectively reduces amplitudes. The small vortices generated by the arc structures disrupt the separation of normal vortices from the boundary layer, leading to approximately a 50 % reduction in amplitude responses for 8-arc and 16-arc cylinders.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.