Solving the Laplace equation on the disc using the UAT spline

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
M. Naimi, M. Lamnii
{"title":"Solving the Laplace equation on the disc using the UAT spline","authors":"M. Naimi,&nbsp;M. Lamnii","doi":"10.1016/j.matcom.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we are interested in the resolution of the Laplace equation <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></mrow></math></span> with Dirichlet boundary condition in a closed surface <span><math><mi>S</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, which is – topologically – equivalent to the unit disc <span><math><mrow><mi>D</mi><mo>=</mo><mrow><mo>{</mo><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>|</mo><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⩽</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. It is known that for a function <span><math><mi>u</mi></math></span> represented in polar coordinates on <span><math><mi>D</mi></math></span>, certain boundary conditions must be satisfied by <span><math><mi>u</mi></math></span> so that the surface <span><math><mi>S</mi></math></span> is of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>. More precisely, we construct an approximant of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> on <span><math><mi>D</mi></math></span> as a tensor product of two quasi-interpolants, one based on UAT-splines and the other based on classical B-splines. Some numerical results are given to validate the work.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003598","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we are interested in the resolution of the Laplace equation Δu=f with Dirichlet boundary condition in a closed surface S in R2, which is – topologically – equivalent to the unit disc D={x,y|x2+y21}. It is known that for a function u represented in polar coordinates on D, certain boundary conditions must be satisfied by u so that the surface S is of class C0. More precisely, we construct an approximant of class C0 on D as a tensor product of two quasi-interpolants, one based on UAT-splines and the other based on classical B-splines. Some numerical results are given to validate the work.
使用 UAT 花键求解圆盘上的拉普拉斯方程
在这项工作中,我们感兴趣的是在 R2 中的封闭曲面 S 上解决带有 Dirichlet 边界条件的拉普拉斯方程 -Δu=f 的问题,该曲面在拓扑上等价于单位圆盘 D={x,y|x2+y2⩽1}。众所周知,对于在 D 上以极坐标表示的函数 u,u 必须满足某些边界条件,这样曲面 S 才属于 C0 类。更确切地说,我们在 D 上构建了一个 C0 类近似值,它是两个准内插值的张量乘积,一个基于 UAT 样条曲线,另一个基于经典 B 样条曲线。我们给出了一些数值结果来验证这项工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信