Long-time dynamics of a random higher-order Kirchhoff model with variable coefficient rotational inertia

IF 1.4 Q2 MATHEMATICS, APPLIED
Penghui Lv , Yuxiao Cun , Guoguang Lin
{"title":"Long-time dynamics of a random higher-order Kirchhoff model with variable coefficient rotational inertia","authors":"Penghui Lv ,&nbsp;Yuxiao Cun ,&nbsp;Guoguang Lin","doi":"10.1016/j.rinam.2024.100498","DOIUrl":null,"url":null,"abstract":"<div><div>This paper delves into the stochastic asymptotic behavior of a non-autonomous stochastic higher-order Kirchhoff equation with variable coefficient rotational inertia. The equation is solved using the Galerkin method, and a stochastic dynamical system is established on this basis. Uniform estimation demonstrates a family of <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo></mrow></math></span>absorbing sets in the stochastic dynamical system <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, and the asymptotic compactness of <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is proved via decomposition. Finally, the family of <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo></mrow></math></span>random attractors is acquired for the stochastic dynamical system <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>×</mo><msubsup><mrow><mi>V</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>k</mi></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. These results improve and extend those in recent literature (Lv et al., 2021). The findings promote the relevant conclusions of the non-autonomous stochastic higher-order Kirchhoff model and provide a theoretical basis for its subsequent application and research.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100498"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into the stochastic asymptotic behavior of a non-autonomous stochastic higher-order Kirchhoff equation with variable coefficient rotational inertia. The equation is solved using the Galerkin method, and a stochastic dynamical system is established on this basis. Uniform estimation demonstrates a family of Dkabsorbing sets in the stochastic dynamical system Φk, and the asymptotic compactness of Φk is proved via decomposition. Finally, the family of Dkrandom attractors is acquired for the stochastic dynamical system Φk in Vm+k(Ω)×Vm+kb0(Ω). These results improve and extend those in recent literature (Lv et al., 2021). The findings promote the relevant conclusions of the non-autonomous stochastic higher-order Kirchhoff model and provide a theoretical basis for its subsequent application and research.
具有可变转动惯量系数的随机高阶基尔霍夫模型的长时动力学
本文深入研究了具有可变系数转动惯量的非自治随机高阶基尔霍夫方程的随机渐近行为。该方程采用 Galerkin 方法求解,并在此基础上建立了一个随机动力系统。统一估计证明了随机动力系统 Φk 中的 Dk 吸收集族,并通过分解证明了 Φk 的渐近紧凑性。最后,获得了 Vm+k(Ω)×Vm+kb0(Ω) 中随机动力系统 Φk 的 Dk 随机吸引子族。这些结果改进并扩展了近期文献(Lv et al.)这些发现促进了非自治随机高阶基尔霍夫模型相关结论的发展,为其后续应用和研究提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信